--- library_name: transformers language: - ne license: mit base_model: kiranpantha/w2v-bert-2.0-nepali tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Balanced-Nepali metrics: - wer model-index: - name: Wave2Vec2-Bert2.0 - Kiran Pantha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: kiranpantha/OpenSLR54-Balanced-Nepali type: kiranpantha/OpenSLR54-Balanced-Nepali args: 'config: ne, split: train,test' metrics: - name: Wer type: wer value: 0.4058169375534645 --- # Wave2Vec2-Bert2.0 - Kiran Pantha This model is a fine-tuned version of [kiranpantha/w2v-bert-2.0-nepali](https://huggingface.co/kiranpantha/w2v-bert-2.0-nepali) on the kiranpantha/OpenSLR54-Balanced-Nepali dataset. It achieves the following results on the evaluation set: - Loss: 0.3739 - Wer: 0.4058 - Cer: 0.0951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.643 | 0.24 | 300 | 0.4271 | 0.4079 | 0.0919 | | 0.6342 | 0.48 | 600 | 0.4928 | 0.4902 | 0.1245 | | 0.6421 | 0.72 | 900 | 0.4251 | 0.4595 | 0.1112 | | 0.5773 | 0.96 | 1200 | 0.4170 | 0.4342 | 0.1069 | | 0.5107 | 1.2 | 1500 | 0.4487 | 0.4469 | 0.1089 | | 0.4639 | 1.44 | 1800 | 0.3823 | 0.4157 | 0.0973 | | 0.4369 | 1.6800 | 2100 | 0.3792 | 0.4145 | 0.0984 | | 0.449 | 1.92 | 2400 | 0.3739 | 0.4058 | 0.0951 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1