End of training
Browse files
README.md
CHANGED
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Wer
|
27 |
type: wer
|
28 |
-
value:
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -35,9 +35,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
35 |
|
36 |
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the OpenSLR54 dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
-
- Loss:
|
39 |
-
- Wer:
|
40 |
-
- Cer: 0.
|
41 |
|
42 |
## Model description
|
43 |
|
@@ -60,7 +60,8 @@ The following hyperparameters were used during training:
|
|
60 |
- train_batch_size: 8
|
61 |
- eval_batch_size: 8
|
62 |
- seed: 42
|
63 |
-
- optimizer:
|
|
|
64 |
- lr_scheduler_type: linear
|
65 |
- lr_scheduler_warmup_steps: 500
|
66 |
- num_epochs: 2
|
@@ -70,33 +71,22 @@ The following hyperparameters were used during training:
|
|
70 |
|
71 |
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
72 |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
| 0.2496 | 1.0798 | 3600 | 0.3297 | 0.3433 | 0.0796 |
|
85 |
-
| 0.242 | 1.1698 | 3900 | 0.3125 | 0.3315 | 0.0770 |
|
86 |
-
| 0.2378 | 1.2597 | 4200 | 0.3158 | 0.3336 | 0.0757 |
|
87 |
-
| 0.2274 | 1.3497 | 4500 | 0.2871 | 0.3097 | 0.0722 |
|
88 |
-
| 0.2142 | 1.4397 | 4800 | 0.3010 | 0.3058 | 0.0712 |
|
89 |
-
| 0.1949 | 1.5297 | 5100 | 0.2767 | 0.2944 | 0.0678 |
|
90 |
-
| 0.198 | 1.6197 | 5400 | 0.2487 | 0.2824 | 0.0639 |
|
91 |
-
| 0.1806 | 1.7097 | 5700 | 0.2376 | 0.2674 | 0.0612 |
|
92 |
-
| 0.1675 | 1.7996 | 6000 | 0.2293 | 0.2630 | 0.0595 |
|
93 |
-
| 0.1671 | 1.8896 | 6300 | 0.2248 | 0.2581 | 0.0576 |
|
94 |
-
| 0.1526 | 1.9796 | 6600 | 0.2212 | 0.2525 | 0.0565 |
|
95 |
|
96 |
|
97 |
### Framework versions
|
98 |
|
99 |
-
- Transformers 4.
|
100 |
-
- Pytorch 2.
|
101 |
-
- Datasets 2.
|
102 |
-
- Tokenizers 0.
|
|
|
25 |
metrics:
|
26 |
- name: Wer
|
27 |
type: wer
|
28 |
+
value: 1.0004629629629629
|
29 |
---
|
30 |
|
31 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
35 |
|
36 |
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the OpenSLR54 dataset.
|
37 |
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 10.8771
|
39 |
+
- Wer: 1.0005
|
40 |
+
- Cer: 0.9690
|
41 |
|
42 |
## Model description
|
43 |
|
|
|
60 |
- train_batch_size: 8
|
61 |
- eval_batch_size: 8
|
62 |
- seed: 42
|
63 |
+
- optimizer: Use OptimizerNames.SGD and the args are:
|
64 |
+
No additional optimizer arguments
|
65 |
- lr_scheduler_type: linear
|
66 |
- lr_scheduler_warmup_steps: 500
|
67 |
- num_epochs: 2
|
|
|
71 |
|
72 |
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
73 |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
|
74 |
+
| 16.7814 | 0.1800 | 300 | 16.3800 | 1.0007 | 3.1059 |
|
75 |
+
| 16.2838 | 0.3599 | 600 | 15.8109 | 1.0005 | 2.9213 |
|
76 |
+
| 15.5569 | 0.5399 | 900 | 15.0093 | 1.0005 | 2.5754 |
|
77 |
+
| 15.0336 | 0.7199 | 1200 | 14.1309 | 1.0002 | 2.0061 |
|
78 |
+
| 13.9247 | 0.8998 | 1500 | 13.2986 | 1.0002 | 1.5023 |
|
79 |
+
| 13.1967 | 1.0798 | 1800 | 12.5663 | 1.0002 | 1.2076 |
|
80 |
+
| 12.4844 | 1.2597 | 2100 | 11.9662 | 1.0002 | 1.0769 |
|
81 |
+
| 11.8394 | 1.4397 | 2400 | 11.4978 | 1.0005 | 1.0134 |
|
82 |
+
| 11.4607 | 1.6197 | 2700 | 11.1599 | 1.0005 | 0.9855 |
|
83 |
+
| 11.2266 | 1.7996 | 3000 | 10.9534 | 1.0005 | 0.9733 |
|
84 |
+
| 11.0877 | 1.9796 | 3300 | 10.8771 | 1.0005 | 0.9690 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
+
- Transformers 4.47.1
|
90 |
+
- Pytorch 2.5.1+cxx11.abi
|
91 |
+
- Datasets 3.2.0
|
92 |
+
- Tokenizers 0.21.0
|