File size: 2,409 Bytes
b01ed75 64514e8 b01ed75 64514e8 b01ed75 64514e8 9fe8564 b01ed75 64514e8 b01ed75 64514e8 9fe8564 b01ed75 64514e8 b01ed75 64514e8 9fe8564 64514e8 9fe8564 64514e8 b01ed75 64514e8 b01ed75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
language:
- ne
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- openslr/openslr
metrics:
- wer
model-index:
- name: Whisper Large Nepali - Kiran Pantha
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: OpenSLR54
type: openslr/openslr
config: default
split: test
args: 'config: ne, split: test'
metrics:
- name: Wer
type: wer
value: 30.25462962962963
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Nepali - Kiran Pantha
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the OpenSLR54 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2112
- Wer: 30.2546
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2615 | 0.5995 | 500 | 0.2454 | 47.2685 |
| 0.123 | 1.1990 | 1000 | 0.1994 | 39.3287 |
| 0.1145 | 1.7986 | 1500 | 0.1835 | 36.1574 |
| 0.0547 | 2.3981 | 2000 | 0.1813 | 33.7037 |
| 0.0506 | 2.9976 | 2500 | 0.1730 | 32.2454 |
| 0.0204 | 3.5971 | 3000 | 0.1911 | 32.2454 |
| 0.0079 | 4.1966 | 3500 | 0.2009 | 31.6667 |
| 0.0061 | 4.7962 | 4000 | 0.2022 | 30.0926 |
| 0.0022 | 5.3957 | 4500 | 0.2097 | 30.2546 |
| 0.0022 | 5.9952 | 5000 | 0.2112 | 30.2546 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|