File size: 2,409 Bytes
b01ed75
64514e8
b01ed75
 
 
 
 
 
 
 
64514e8
 
b01ed75
64514e8
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe8564
b01ed75
 
 
 
 
64514e8
b01ed75
 
64514e8
9fe8564
 
b01ed75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64514e8
 
 
b01ed75
 
 
64514e8
9fe8564
64514e8
 
 
 
 
 
9fe8564
 
 
 
 
 
 
 
 
 
64514e8
b01ed75
 
 
64514e8
 
 
b01ed75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
language:
- ne
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- openslr/openslr
metrics:
- wer
model-index:
- name: Whisper Large Nepali - Kiran Pantha
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: OpenSLR54
      type: openslr/openslr
      config: default
      split: test
      args: 'config: ne, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 30.25462962962963
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large Nepali - Kiran Pantha

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the OpenSLR54 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2112
- Wer: 30.2546

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2615        | 0.5995 | 500  | 0.2454          | 47.2685 |
| 0.123         | 1.1990 | 1000 | 0.1994          | 39.3287 |
| 0.1145        | 1.7986 | 1500 | 0.1835          | 36.1574 |
| 0.0547        | 2.3981 | 2000 | 0.1813          | 33.7037 |
| 0.0506        | 2.9976 | 2500 | 0.1730          | 32.2454 |
| 0.0204        | 3.5971 | 3000 | 0.1911          | 32.2454 |
| 0.0079        | 4.1966 | 3500 | 0.2009          | 31.6667 |
| 0.0061        | 4.7962 | 4000 | 0.2022          | 30.0926 |
| 0.0022        | 5.3957 | 4500 | 0.2097          | 30.2546 |
| 0.0022        | 5.9952 | 5000 | 0.2112          | 30.2546 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1