Update tokenizer
Browse files
README.md
CHANGED
@@ -41,7 +41,7 @@ Summarisation and emotion detection has not been evaluated yet.
|
|
41 |
```python
|
42 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
43 |
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
44 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
45 |
|
46 |
def get_answer(question, prev_qa, context):
|
47 |
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
|
@@ -81,7 +81,7 @@ model.qa("Why not?", context, prev_qa=prev_qa)
|
|
81 |
```python
|
82 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
83 |
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
84 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
85 |
|
86 |
def summary(context):
|
87 |
input_text = f"summarize: {context}"
|
@@ -109,7 +109,7 @@ model.summarise("Long text to summarise")
|
|
109 |
```python
|
110 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
111 |
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
112 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
113 |
|
114 |
def emotion(context):
|
115 |
input_text = f"emotion: {context}"
|
|
|
41 |
```python
|
42 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
43 |
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
44 |
+
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
45 |
|
46 |
def get_answer(question, prev_qa, context):
|
47 |
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
|
|
|
81 |
```python
|
82 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
83 |
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
84 |
+
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
85 |
|
86 |
def summary(context):
|
87 |
input_text = f"summarize: {context}"
|
|
|
109 |
```python
|
110 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
111 |
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
112 |
+
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
113 |
|
114 |
def emotion(context):
|
115 |
input_text = f"emotion: {context}"
|