File size: 14,445 Bytes
8241db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Kosmos2_5."""

import math
from typing import Dict, Optional, Union

import numpy as np

from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
    convert_to_rgb,
    normalize,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    ChannelDimension,
    ImageInput,
    get_image_size,
    infer_channel_dimension_format,
    make_list_of_images,
    to_numpy_array,
    valid_images,
)
from transformers.utils import TensorType, is_torch_available, logging
from transformers.utils.import_utils import requires_backends


if is_torch_available():
    import torch

logger = logging.get_logger(__name__)
DEFAULT_FONT_PATH = "ybelkada/fonts"


# adapted from: https://discuss.pytorch.org/t/tf-image-extract-patches-in-pytorch/171409/2
def torch_extract_patches(image_tensor, patch_height, patch_width):
    """
    Utiliy function to extract patches from a given image tensor. Returns a tensor of shape (1, `patch_height`,
    `patch_width`, `num_channels`x `patch_height` x `patch_width`)

    Args:
        image_tensor (torch.Tensor):
            The image tensor to extract patches from.
        patch_height (int):
            The height of the patches to extract.
        patch_width (int):
            The width of the patches to extract.
    """
    requires_backends(torch_extract_patches, ["torch"])

    image_tensor = image_tensor.unsqueeze(0)
    patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width))
    patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1)
    patches = patches.permute(0, 4, 2, 3, 1).reshape(
        image_tensor.size(2) // patch_height,
        image_tensor.size(3) // patch_width,
        image_tensor.size(1) * patch_height * patch_width,
    )
    return patches.unsqueeze(0)


class Kosmos2_5ImageProcessor(BaseImageProcessor):
    r"""
    Constructs a Kosmos2_5 image processor.

    Args:
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method. According to Kosmos2_5 paper and code, the image is normalized with its own mean and standard
            deviation.
        patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`):
            The patch size to use for the image. According to Kosmos2_5 paper and code, the patch size is 16x16.
        max_patches (`int`, *optional*, defaults to 4096):
            The maximum number of patches to extract from the image as per the [Kosmos2_5
            paper](https://arxiv.org/pdf/2309.11419).
    """

    model_input_names = ["flattened_patches"]

    def __init__(
        self,
        do_convert_rgb: bool = True,
        do_normalize: bool = True,
        patch_size: Dict[str, int] = None,
        max_patches: int = 4096,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
        self.do_normalize = do_normalize
        self.do_convert_rgb = do_convert_rgb
        self.max_patches = max_patches

    def extract_flattened_patches(
        self,
        image: np.ndarray,
        max_patches: int,
        patch_size: dict,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Extract flattened patches from an image.

        Args:
            image (`np.ndarray`):
                Image to extract flattened patches from.
            max_patches (`int`):
                Maximum number of patches to extract.
            patch_size (`dict`):
                Dictionary containing the patch height and width.

        Returns:
            result (`np.ndarray`):
                A sequence of `max_patches` flattened patches.
        """
        requires_backends(self.extract_flattened_patches, "torch")

        # convert to torch
        image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
        image = torch.from_numpy(image)

        patch_height, patch_width = patch_size["height"], patch_size["width"]
        image_height, image_width = get_image_size(image, ChannelDimension.FIRST)

        # maximize scale s.t.
        scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width))
        num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1)
        num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1)
        resized_height = max(num_feasible_rows * patch_height, 1)
        resized_width = max(num_feasible_cols * patch_width, 1)

        image = torch.nn.functional.interpolate(
            image.unsqueeze(0),
            size=(resized_height, resized_width),
            mode="bilinear",
            align_corners=False,
            antialias=True,
        ).squeeze(0)

        # [1, rows, columns, patch_height * patch_width * image_channels]
        patches = torch_extract_patches(image, patch_height, patch_width)

        patches_shape = patches.shape
        rows = patches_shape[1]
        columns = patches_shape[2]
        depth = patches_shape[3]

        # [rows * columns, patch_height * patch_width * image_channels]
        patches = patches.reshape([rows * columns, depth])

        # [rows * columns, 1]
        row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1])
        col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1])

        # Offset by 1 so the ids do not contain zeros, which represent padding.
        row_ids += 1
        col_ids += 1

        # Prepare additional patch features.
        # [rows * columns, 1]
        row_ids = row_ids.to(torch.float32)
        col_ids = col_ids.to(torch.float32)

        # [rows * columns, 2 + patch_height * patch_width * image_channels]
        result = torch.cat([row_ids, col_ids, patches], -1)

        # [max_patches, 2 + patch_height * patch_width * image_channels]
        result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float()

        result = to_numpy_array(result)

        return result, resized_width, resized_height, rows, columns

    def normalize(
        self,
        image: np.ndarray,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Normalize an image. image = (image - image_mean) / image_std.

        The image std is to mimic the tensorflow implementation of the `per_image_standardization`:
        https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization

        Args:
            image (`np.ndarray`):
                Image to normalize.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        """
        if image.dtype == np.uint8:
            image = image.astype(np.float32)

        # take mean across the whole `image`
        mean = np.mean(image)
        std = np.std(image)
        adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape)))

        return normalize(
            image,
            mean=mean,
            std=adjusted_stddev,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )

    def preprocess(
        self,
        images: ImageInput,
        do_convert_rgb: bool = None,
        do_normalize: Optional[bool] = None,
        max_patches: Optional[int] = None,
        patch_size: Optional[Dict[str, int]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: ChannelDimension = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> ImageInput:
        """
        Preprocess an image or batch of images. The processor first computes the maximum possible number of
        aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the
        image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the
        images are standardized following the tensorflow implementation of `per_image_standardization`
        (https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization).


        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            max_patches (`int`, *optional*, defaults to `self.max_patches`):
                Maximum number of patches to extract.
            patch_size (`dict`, *optional*, defaults to `self.patch_size`):
                Dictionary containing the patch height and width.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
        patch_size = patch_size if patch_size is not None else self.patch_size
        max_patches = max_patches if max_patches is not None else self.max_patches

        if kwargs.get("data_format", None) is not None:
            raise ValueError("data_format is not an accepted input as the outputs are ")

        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        # PIL RGBA images are converted to RGB
        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        if do_normalize:
            images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]

        # convert to torch tensor and permute
        images = [
            self.extract_flattened_patches(
                image=image,
                max_patches=max_patches,
                patch_size=patch_size,
                input_data_format=input_data_format,
            )
            for image in images
        ]

        width = [image[1] for image in images]
        height = [image[2] for image in images]
        rows = [image[3] for image in images]
        cols = [image[4] for image in images]
        images = [image[0] for image in images]

        # create attention mask in numpy
        attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images]

        encoded_outputs = BatchFeature(
            data={
                "flattened_patches": images,
                "attention_mask": attention_masks,
                "width": width,
                "height": height,
                "rows": rows,
                "cols": cols,
            },
            tensor_type=return_tensors,
        )

        return encoded_outputs