|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Kosmos2_5. |
|
""" |
|
|
|
from typing import List, Optional, Union |
|
import transformers |
|
from transformers.image_processing_utils import BatchFeature |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType, is_torch_available |
|
from .image_processing_kosmos2_5 import Kosmos2_5ImageProcessor |
|
transformers.Kosmos2_5ImageProcessor = Kosmos2_5ImageProcessor |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
class Kosmos2_5Processor(ProcessorMixin): |
|
r""" |
|
Constructs a Kosmos2_5 processor which wraps a BERT tokenizer and Kosmos2_5 image processor into a single |
|
processor. |
|
|
|
[`Kosmos2_5Processor`] offers all the functionalities of [`Kosmos2_5ImageProcessor`] and [`T5TokenizerFast`]. See |
|
the docstring of [`~Kosmos2_5Processor.__call__`] and [`~Kosmos2_5Processor.decode`] for more information. |
|
|
|
Args: |
|
image_processor (`Kosmos2_5ImageProcessor`): |
|
An instance of [`Kosmos2_5ImageProcessor`]. The image processor is a required input. |
|
tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]): |
|
An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "Kosmos2_5ImageProcessor" |
|
tokenizer_class = "PreTrainedTokenizerFast" |
|
|
|
def __init__(self, image_processor, tokenizer): |
|
tokenizer.return_token_type_ids = False |
|
self.image_processor = image_processor |
|
self.tokenizer = tokenizer |
|
|
|
def __call__( |
|
self, |
|
images=None, |
|
text: Union[TextInput, List[TextInput]] = None, |
|
add_special_tokens: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
truncation: Union[bool, str, TruncationStrategy] = True, |
|
max_length: Optional[int] = None, |
|
max_patches: Optional[int] = 4096, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = "pt", |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
This method uses [`Kosmos2_5ImageProcessor.preprocess`] method to prepare image(s) for the model, and |
|
[`PreTrainedTokenizerFast.__call__`] to prepare text for the model. |
|
|
|
Please refer to the docstring of the above two methods for more information. |
|
|
|
The rest of this documentation shows the arguments specific to `Kosmos2_5Processor`. |
|
""" |
|
if images is None and text is None: |
|
raise ValueError("You have to specify either images or text.") |
|
|
|
encoding = BatchFeature() |
|
|
|
if images is not None: |
|
image_encoding = self.image_processor( |
|
images, return_tensors=return_tensors, max_patches=max_patches, **kwargs |
|
) |
|
image_encoding.pop("rows") |
|
image_encoding.pop("cols") |
|
encoding.update(image_encoding) |
|
|
|
if text is not None: |
|
|
|
input = self.tokenizer( |
|
text, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
return_tensors="pt", |
|
) |
|
|
|
batch_size, seq_len = input.input_ids.shape |
|
additional_tokens = [0, 100283] + [0] * 2048 + [100284] |
|
additional_tokens_tensor = torch.tensor(additional_tokens).unsqueeze(0).repeat(batch_size, 1) |
|
input_ids = torch.cat([additional_tokens_tensor, input.input_ids], dim=1) |
|
|
|
image_embeds_position_mask = [0, -1] + [1] * 2048 + [-1] + [0] * seq_len |
|
image_embeds_position_mask = ( |
|
torch.LongTensor(image_embeds_position_mask).unsqueeze(0).repeat(batch_size, 1) |
|
) |
|
|
|
added_attention_mask = [1, 1] + [1] * 2048 + [1] |
|
added_attention_mask_tensor = torch.tensor(added_attention_mask).unsqueeze(0).repeat(batch_size, 1) |
|
attention_mask = torch.cat([added_attention_mask_tensor, input.attention_mask], dim=1) |
|
encoding.update( |
|
{ |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"image_embeds_position_mask": image_embeds_position_mask, |
|
} |
|
) |
|
|
|
return encoding |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. |
|
Please refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |