ppo-LunarLander-v2 / config.json
kkewat's picture
Upload PPO LunarLander-v2 trained agent
25a80f6 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79f4b59f9bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79f4b59f9c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79f4b59f9cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79f4b59f9d80>", "_build": "<function ActorCriticPolicy._build at 0x79f4b59f9e10>", "forward": "<function ActorCriticPolicy.forward at 0x79f4b59f9ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79f4b59f9f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79f4b59f9fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x79f4b59fa050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79f4b59fa0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79f4b59fa170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79f4b59fa200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f4b5997000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725290760583676582, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHqZUz7KQnY/N0qnPjvtGb8GI5U+mtWMPQAAAAAAAAAAGlsRva5xoroaJLM2N67gMRNtr7hdGdC1AACAPwAAgD+zZac979JcP4YLaT1TvzK/eofVPfq3z7sAAAAAAAAAAGbuGLv2cC+6KgssM18BPjDUSgg7gErPswAAgD8AAIA/ZthVvJyugD96uei8W40+vxihX72NfHu7AAAAAAAAAABzaDE+sl4kPrINwb7uBSu+vtxgvUqqMb4AAAAAAAAAAM0iqD0Y4PU9fjkOvi0og76szBA9slYtvQAAAAAAAAAAs8IKPRQNsDvIONS9NvhJvkj6QL2Fp6G8AAAAAAAAAADGkgk+MYqFP0zWqz5a+SG/mYRePj2tET4AAAAAAAAAAC1lLL4lv4k/uXOlvsVhEr8prm2+xgcgvQAAAAAAAAAAmiTiPBnfuT8LiS4/UOLVPqoMprwfkz69AAAAAAAAAAAA9pA+VulnP/rM2T2BaCK/5lq7Pg7dLTwAAAAAAAAAAE2JXL6PxgU/MjlOPSOvBL+vM0e++4buPAAAAAAAAAAAAL1avhehJD+o5eC8Ti0Ev3jKjr4jhaI9AAAAAAAAAAAAxAA90pPeuzdTyrs7LZY8t+onPa1/fL0AAIA/AACAP/ORqL2F89651LwZuPEMILNeJ0W6P5UyNwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI++YplSTCMAWyUS8GMAXSUR0CltJ+d07r+dX2UKGgGR0BzYyCL/CIlaAdL6GgIR0CltMGQjlgddX2UKGgGR0BzTd3hXKbKaAdL92gIR0CltNNVzZHvdX2UKGgGR0BxwDGbTc7AaAdL4WgIR0CltOJt78ekdX2UKGgGR0ByOrlq8DjjaAdN0gJoCEdApbUKHoHLR3V9lChoBkdAcUr+NcW0q2gHS61oCEdApbUjmjj7ynV9lChoBkdAckxLux8lX2gHS81oCEdApbV7O/tY0XV9lChoBkdAcg5K6WgOBmgHS65oCEdApbWzuIAOrnV9lChoBkdAcnGm6GxlhGgHS/FoCEdApbXM0Ltu1nV9lChoBkdAchmckdFOPGgHS9BoCEdApbZfpdKNAHV9lChoBkdAb2fF3IMjNmgHS9FoCEdApbaTAeq7y3V9lChoBkdAcp+8hcJMQGgHS/BoCEdApbaZOerdWXV9lChoBkdAc7IgPmPo3mgHTdABaAhHQKW28Mz/IbR1fZQoaAZHQHJGisS00FdoB0vAaAhHQKW3UUjcEeR1fZQoaAZHQHF/zc6/7BRoB0u/aAhHQKW3XiOvMbF1fZQoaAZHQHCHY9X9zfdoB0vNaAhHQKW3bKDCgsd1fZQoaAZHQHCu1rEcbR5oB0u2aAhHQKW3g+36Q/51fZQoaAZHQHBnFCw8nu1oB0vjaAhHQKW3lFSbYsd1fZQoaAZHQHRciofjjrBoB0vLaAhHQKW3rPSlWOp1fZQoaAZHQHNAK+FlCkZoB0vVaAhHQKW4O6wt8NR1fZQoaAZHQHMo1/DtPYZoB0vtaAhHQKW4xJ6IFeR1fZQoaAZHQHEXHVLBbfRoB0vqaAhHQKW41AN5MUR1fZQoaAZHQG/fHuZ1FH9oB0u/aAhHQKW42g9vCMx1fZQoaAZHQHC/12NedCpoB0vBaAhHQKW5GO9WZJF1fZQoaAZHQEzab70nPVxoB03oA2gIR0ClubAG0NSZdX2UKGgGR0BxybxRVIZqaAdL22gIR0Cluc6iCaqkdX2UKGgGR0Bx2c1aW5YpaAdLv2gIR0Cluc5UtI07dX2UKGgGR0BxynNA1NxmaAdL+GgIR0CludBTfixWdX2UKGgGR0Bw3OUwBYFJaAdLvWgIR0CludL3TNMXdX2UKGgGR0Bw17jXFtKqaAdLwGgIR0Cl54iOmzjWdX2UKGgGR0ByIEqaw2VFaAdL5mgIR0Cl6B0qx1PndX2UKGgGR0ByuXppvgm7aAdLwWgIR0Cl6E+6Zpi7dX2UKGgGR0BzlyH1vl2eaAdNAwFoCEdApehpKvmoznV9lChoBkdAcK/HSF49o2gHS7VoCEdApejCaPS2IHV9lChoBkdAcAGl7tzCDWgHS6xoCEdApejiOLiuMnV9lChoBkdAcv3LFGXokmgHS+VoCEdApelgBNmDlHV9lChoBkdAcWP5HmRvFWgHS/doCEdApemNIPK+z3V9lChoBkdAcGV92ovSMWgHS8FoCEdApenge3hGY3V9lChoBkdAcnVHww0wamgHS9BoCEdApeny+vhZQ3V9lChoBkdAc1Yd+ocaO2gHTdQCaAhHQKXqG9M9KVZ1fZQoaAZHQHNUI6Kcd5poB0vWaAhHQKXqJ9uP3i91fZQoaAZHQHOf/j0cwQFoB0vfaAhHQKXqXRuTA311fZQoaAZHQHHEiG34Kx9oB0vpaAhHQKXqZVPva111fZQoaAZHQG/Otrbg0j1oB00PAWgIR0Cl6tqB/ZuidX2UKGgGR0ByZE84gieNaAdL2WgIR0Cl6uoPCl7/dX2UKGgGR0BR1qxxDLKWaAdLq2gIR0Cl6vlDfFaTdX2UKGgGR0ByCSHerMkhaAdL1mgIR0Cl6xGnfl6rdX2UKGgGR0BzMLpzLfUGaAdL1WgIR0Cl6yiqyWzGdX2UKGgGR0BzO/fcer+6aAdLzmgIR0Cl64eMqBmPdX2UKGgGR0BxmwOYplSTaAdLwGgIR0Cl6/h8YyfudX2UKGgGR0ByvvK6nR9gaAdNGwJoCEdApewnIyTINnV9lChoBkdAcuMs+FDfFmgHS7xoCEdApexMY64lQnV9lChoBkdAcc+tNBWxQmgHS7hoCEdApexkVrRBvHV9lChoBkdAcSMywfQrtmgHS8RoCEdApeyY3vQWvnV9lChoBkdAbn46xxDLKWgHS7toCEdApey7TtsvZnV9lChoBkdAcb3Q+UyHmGgHS8BoCEdApezCjpLVWnV9lChoBkdAcbKuGbkOqmgHS+5oCEdApezfNC7btnV9lChoBkdAcuiTY/Vy3mgHTScBaAhHQKXtF8P4EfV1fZQoaAZHQHFEGNFSbYtoB0u0aAhHQKXtXH8TBZZ1fZQoaAZHQHMDfuXu3MJoB0vGaAhHQKXtZYHxBmh1fZQoaAZHQHNhA5vLowFoB0vWaAhHQKXtvLA57w91fZQoaAZHQHNkPysjmjloB0v0aAhHQKXuBa11GLF1fZQoaAZHQHOKjKHO8kFoB0v6aAhHQKXuC97ngYR1fZQoaAZHQHDaNz8xbjdoB0vWaAhHQKXuVzDn/1h1fZQoaAZHQHGnqynk1dhoB0utaAhHQKXue+10DEF1fZQoaAZHQHJP6VQhwERoB0unaAhHQKXuj/DLr5Z1fZQoaAZHQHQf0dV/+bVoB0vLaAhHQKXuuPDpC8h1fZQoaAZHQGpoMpPRArxoB03bA2gIR0Cl7tt+so2GdX2UKGgGR0BxKESzw+dLaAdLvGgIR0Cl7vqISDh+dX2UKGgGR0Bx+V6yB06paAdLv2gIR0Cl7znSF49pdX2UKGgGR0BxOaWC2+fzaAdLtmgIR0Cl70F8XvYwdX2UKGgGR0Bu63Cj1wo9aAdLuWgIR0Cl72y2phnbdX2UKGgGR0By/StPpIMCaAdL2GgIR0Cl8B7fP5YYdX2UKGgGR0ByBBq1w5vMaAdLvWgIR0Cl8CKmsNlRdX2UKGgGR0BzkSSSvC/HaAdLwGgIR0Cl8CMVtXPrdX2UKGgGR0ByJFjFyaNNaAdL/GgIR0Cl8EJNbkfcdX2UKGgGR0BzZHTVlPJraAdL3mgIR0Cl8QeKTB69dX2UKGgGR0ByGGosI3R5aAdL1WgIR0Cl8S/kNnXedX2UKGgGR0BzO4cxTKkmaAdL9WgIR0Cl8bH/T9bYdX2UKGgGR0ByzKqgh8pkaAdL5WgIR0Cl8edQfp2VdX2UKGgGR0Bx2QiY9gWraAdLymgIR0Cl8gPD50r9dX2UKGgGR0ByKxVsDW9UaAdL2mgIR0Cl8iCPZIxydX2UKGgGR0By19/b0voNaAdL82gIR0Cl8jSYoiLVdX2UKGgGR0BzDzFCLMs6aAdL6GgIR0Cl8jPAGjbjdX2UKGgGR0BybRy3kPtlaAdLz2gIR0Cl8lv6j323dX2UKGgGR0BwroPsiSq3aAdLxGgIR0Cl8mp9JBgNdX2UKGgGR0BzIBtGd7OWaAdL8mgIR0Cl8uBqj8DTdX2UKGgGR0Bx+7Pmgam5aAdLvWgIR0Cl8wbtRekYdX2UKGgGR0BykiMYMvytaAdL62gIR0Cl88lsHjZMdX2UKGgGR0Bx5UolUp/gaAdL8WgIR0Cl8+UY8+zMdX2UKGgGR0Bul6O7xusLaAdL7mgIR0Cl8/q0tyxSdX2UKGgGR0BxH7HR1HOKaAdLnGgIR0Cl9GGgSOBEdX2UKGgGR0Bxuv7di2DyaAdL62gIR0Cl9HaqS5iFdX2UKGgGR0BwXnQgLZzxaAdLvmgIR0Cl9IyEcsDodX2UKGgGR0By0PZCfHxSaAdL7WgIR0Cl9JbHhjvvdX2UKGgGR0BwmYhje9BbaAdLxGgIR0Cl9MLR8c+8dX2UKGgGR0Bw439XLeQ/aAdLtmgIR0Cl9MqWC2+gdX2UKGgGR0BzOjDk2gnMaAdL5WgIR0Cl9NQtz0YkdX2UKGgGR0BvcMvK2a2GaAdL0mgIR0Cl9NZZr56/dX2UKGgGR0Bvlg7tAs06aAdL0mgIR0Cl9Rwkona4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}