--- base_model: llm-jp/llm-jp-3-13b-instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Finetuned from model :** llm-jp/llm-jp-3-13b-instruct # 必要なパッケージのインストール ``` pip install -U bitsandbytes transformers accelerate datasets peft ``` # Sample Use 以下は、elyza-tasks-100-TV_0.jsonlの回答のためのコードです。 ```python from transformers import( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from tqdm import tqdm import json HF_TOKEN = "有効なHuggingFaceトークン" model_name = "kky84176/llm-jp-3-13b-instruct-it04" # bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", # nf4は通常のINT4より精度が高く、ニューラルネットワークの分布に最適です bnb_4bit_compute_dtype=torch.bfloat16, ) # モデルの読込み model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token=HF_TOKEN, ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remoe_code=True, token=HF_TOKEN) # データの読込み import json datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # モデルによる推論 results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答 """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=512, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) # jsonl への出力 import re new_model_id = "llm-jp-3-13b-instruct-it04" jsonl_id = re.sub(".*/", "", new_model_id) with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n') ```