Model save
Browse files- README.md +7 -7
- all_results.json +7 -12
- train_results.json +7 -7
- trainer_state.json +170 -72
README.md
CHANGED
@@ -20,7 +20,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the generator dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 1.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -48,22 +48,22 @@ The following hyperparameters were used during training:
|
|
48 |
- gradient_accumulation_steps: 2
|
49 |
- total_train_batch_size: 256
|
50 |
- total_eval_batch_size: 128
|
51 |
-
- optimizer: Use
|
52 |
- lr_scheduler_type: cosine
|
53 |
- lr_scheduler_warmup_ratio: 0.1
|
54 |
- num_epochs: 1
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch
|
59 |
-
|
60 |
-
| 1.
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
- PEFT 0.13.1.dev0
|
66 |
-
- Transformers 4.46.
|
67 |
-
- Pytorch 2.
|
68 |
- Datasets 3.1.0
|
69 |
- Tokenizers 0.20.3
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the generator dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.7616
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
48 |
- gradient_accumulation_steps: 2
|
49 |
- total_train_batch_size: 256
|
50 |
- total_eval_batch_size: 128
|
51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: cosine
|
53 |
- lr_scheduler_warmup_ratio: 0.1
|
54 |
- num_epochs: 1
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
60 |
+
| 1.3703 | 1.0 | 137 | 1.7616 |
|
61 |
|
62 |
|
63 |
### Framework versions
|
64 |
|
65 |
- PEFT 0.13.1.dev0
|
66 |
+
- Transformers 4.46.3
|
67 |
+
- Pytorch 2.3.1+cu121
|
68 |
- Datasets 3.1.0
|
69 |
- Tokenizers 0.20.3
|
all_results.json
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch": 0
|
3 |
-
"
|
4 |
-
"
|
5 |
-
"
|
6 |
-
"
|
7 |
-
"
|
8 |
-
"
|
9 |
-
"train_loss": 2.0918032141292797,
|
10 |
-
"train_runtime": 338.6733,
|
11 |
-
"train_samples": 51241,
|
12 |
-
"train_samples_per_second": 51.761,
|
13 |
-
"train_steps_per_second": 0.201
|
14 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"total_flos": 8.089579620799611e+17,
|
4 |
+
"train_loss": 1.4743173070197557,
|
5 |
+
"train_runtime": 700.8271,
|
6 |
+
"train_samples": 116368,
|
7 |
+
"train_samples_per_second": 49.884,
|
8 |
+
"train_steps_per_second": 0.195
|
|
|
|
|
|
|
|
|
|
|
9 |
}
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch": 0
|
3 |
-
"total_flos":
|
4 |
-
"train_loss":
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples":
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 0.
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"total_flos": 8.089579620799611e+17,
|
4 |
+
"train_loss": 1.4743173070197557,
|
5 |
+
"train_runtime": 700.8271,
|
6 |
+
"train_samples": 116368,
|
7 |
+
"train_samples_per_second": 49.884,
|
8 |
+
"train_steps_per_second": 0.195
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,131 +1,229 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 0
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch": 0.
|
13 |
-
"grad_norm":
|
14 |
-
"learning_rate":
|
15 |
-
"loss":
|
16 |
"step": 1
|
17 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
{
|
19 |
"epoch": 0.072992700729927,
|
20 |
-
"grad_norm":
|
21 |
"learning_rate": 0.00014285714285714287,
|
22 |
-
"loss":
|
23 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
},
|
25 |
{
|
26 |
"epoch": 0.145985401459854,
|
27 |
-
"grad_norm": 0.
|
28 |
-
"learning_rate": 0.
|
29 |
-
"loss":
|
30 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.21897810218978103,
|
34 |
-
"grad_norm": 0.
|
35 |
-
"learning_rate": 0.
|
36 |
-
"loss":
|
37 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
},
|
39 |
{
|
40 |
"epoch": 0.291970802919708,
|
41 |
-
"grad_norm": 0.
|
42 |
-
"learning_rate": 0.
|
43 |
-
"loss":
|
44 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
},
|
46 |
{
|
47 |
"epoch": 0.36496350364963503,
|
48 |
-
"grad_norm": 0.
|
49 |
-
"learning_rate": 0.
|
50 |
-
"loss":
|
51 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
},
|
53 |
{
|
54 |
"epoch": 0.43795620437956206,
|
55 |
-
"grad_norm": 0.
|
56 |
-
"learning_rate": 0.
|
57 |
-
"loss":
|
58 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
},
|
60 |
{
|
61 |
"epoch": 0.5109489051094891,
|
62 |
-
"grad_norm": 0.
|
63 |
-
"learning_rate": 0.
|
64 |
-
"loss": 1.
|
65 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
},
|
67 |
{
|
68 |
"epoch": 0.583941605839416,
|
69 |
-
"grad_norm": 0.
|
70 |
-
"learning_rate": 8.
|
71 |
-
"loss": 1.
|
72 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
},
|
74 |
{
|
75 |
"epoch": 0.656934306569343,
|
76 |
-
"grad_norm": 0.
|
77 |
-
"learning_rate": 6.
|
78 |
-
"loss": 1.
|
79 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
},
|
81 |
{
|
82 |
"epoch": 0.7299270072992701,
|
83 |
-
"grad_norm": 0.
|
84 |
-
"learning_rate":
|
85 |
-
"loss": 1.
|
86 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
},
|
88 |
{
|
89 |
"epoch": 0.8029197080291971,
|
90 |
-
"grad_norm": 0.
|
91 |
-
"learning_rate": 2.
|
92 |
-
"loss": 1.
|
93 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
},
|
95 |
{
|
96 |
"epoch": 0.8759124087591241,
|
97 |
-
"grad_norm": 0.
|
98 |
-
"learning_rate":
|
99 |
-
"loss": 1.
|
100 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
},
|
102 |
{
|
103 |
"epoch": 0.948905109489051,
|
104 |
-
"grad_norm": 0.
|
105 |
-
"learning_rate": 1.
|
106 |
-
"loss": 1.
|
107 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
},
|
109 |
{
|
110 |
-
"epoch": 0
|
111 |
-
"eval_loss": 1.
|
112 |
-
"eval_runtime":
|
113 |
-
"eval_samples_per_second":
|
114 |
-
"eval_steps_per_second": 1.
|
115 |
-
"step":
|
116 |
},
|
117 |
{
|
118 |
-
"epoch": 0
|
119 |
-
"step":
|
120 |
-
"total_flos":
|
121 |
-
"train_loss":
|
122 |
-
"train_runtime":
|
123 |
-
"train_samples_per_second":
|
124 |
-
"train_steps_per_second": 0.
|
125 |
}
|
126 |
],
|
127 |
"logging_steps": 5,
|
128 |
-
"max_steps":
|
129 |
"num_input_tokens_seen": 0,
|
130 |
"num_train_epochs": 1,
|
131 |
"save_steps": 100,
|
@@ -141,7 +239,7 @@
|
|
141 |
"attributes": {}
|
142 |
}
|
143 |
},
|
144 |
-
"total_flos":
|
145 |
"train_batch_size": 16,
|
146 |
"trial_name": null,
|
147 |
"trial_params": null
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 137,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 0.0072992700729927005,
|
13 |
+
"grad_norm": 0.6737354397773743,
|
14 |
+
"learning_rate": 1.4285714285714285e-05,
|
15 |
+
"loss": 1.9885,
|
16 |
"step": 1
|
17 |
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0364963503649635,
|
20 |
+
"grad_norm": 0.5888584852218628,
|
21 |
+
"learning_rate": 7.142857142857143e-05,
|
22 |
+
"loss": 1.96,
|
23 |
+
"step": 5
|
24 |
+
},
|
25 |
{
|
26 |
"epoch": 0.072992700729927,
|
27 |
+
"grad_norm": 0.44593068957328796,
|
28 |
"learning_rate": 0.00014285714285714287,
|
29 |
+
"loss": 1.927,
|
30 |
+
"step": 10
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.10948905109489052,
|
34 |
+
"grad_norm": 0.5411117076873779,
|
35 |
+
"learning_rate": 0.00019996738360808565,
|
36 |
+
"loss": 1.8403,
|
37 |
+
"step": 15
|
38 |
},
|
39 |
{
|
40 |
"epoch": 0.145985401459854,
|
41 |
+
"grad_norm": 0.4955069422721863,
|
42 |
+
"learning_rate": 0.00019882804237803488,
|
43 |
+
"loss": 1.6916,
|
44 |
+
"step": 20
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.18248175182481752,
|
48 |
+
"grad_norm": 0.51289963722229,
|
49 |
+
"learning_rate": 0.00019607909582962477,
|
50 |
+
"loss": 1.5926,
|
51 |
+
"step": 25
|
52 |
},
|
53 |
{
|
54 |
"epoch": 0.21897810218978103,
|
55 |
+
"grad_norm": 0.2931584417819977,
|
56 |
+
"learning_rate": 0.0001917653158603628,
|
57 |
+
"loss": 1.5275,
|
58 |
+
"step": 30
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.25547445255474455,
|
62 |
+
"grad_norm": 0.20454026758670807,
|
63 |
+
"learning_rate": 0.00018595696069872013,
|
64 |
+
"loss": 1.4805,
|
65 |
+
"step": 35
|
66 |
},
|
67 |
{
|
68 |
"epoch": 0.291970802919708,
|
69 |
+
"grad_norm": 0.15512123703956604,
|
70 |
+
"learning_rate": 0.00017874863061334657,
|
71 |
+
"loss": 1.4545,
|
72 |
+
"step": 40
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.3284671532846715,
|
76 |
+
"grad_norm": 0.14049112796783447,
|
77 |
+
"learning_rate": 0.00017025772716520323,
|
78 |
+
"loss": 1.4489,
|
79 |
+
"step": 45
|
80 |
},
|
81 |
{
|
82 |
"epoch": 0.36496350364963503,
|
83 |
+
"grad_norm": 0.12365967035293579,
|
84 |
+
"learning_rate": 0.0001606225410966638,
|
85 |
+
"loss": 1.4337,
|
86 |
+
"step": 50
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.40145985401459855,
|
90 |
+
"grad_norm": 0.12197204679250717,
|
91 |
+
"learning_rate": 0.00015000000000000001,
|
92 |
+
"loss": 1.4202,
|
93 |
+
"step": 55
|
94 |
},
|
95 |
{
|
96 |
"epoch": 0.43795620437956206,
|
97 |
+
"grad_norm": 0.1118067055940628,
|
98 |
+
"learning_rate": 0.0001385631124488136,
|
99 |
+
"loss": 1.4099,
|
100 |
+
"step": 60
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.4744525547445255,
|
104 |
+
"grad_norm": 0.10998713970184326,
|
105 |
+
"learning_rate": 0.0001264981502196662,
|
106 |
+
"loss": 1.3993,
|
107 |
+
"step": 65
|
108 |
},
|
109 |
{
|
110 |
"epoch": 0.5109489051094891,
|
111 |
+
"grad_norm": 0.11097019165754318,
|
112 |
+
"learning_rate": 0.00011400161449686293,
|
113 |
+
"loss": 1.3987,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.5474452554744526,
|
118 |
+
"grad_norm": 0.1111425831913948,
|
119 |
+
"learning_rate": 0.00010127703547159739,
|
120 |
+
"loss": 1.3845,
|
121 |
+
"step": 75
|
122 |
},
|
123 |
{
|
124 |
"epoch": 0.583941605839416,
|
125 |
+
"grad_norm": 0.11766236275434494,
|
126 |
+
"learning_rate": 8.853165746015997e-05,
|
127 |
+
"loss": 1.381,
|
128 |
+
"step": 80
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.6204379562043796,
|
132 |
+
"grad_norm": 0.11702164262533188,
|
133 |
+
"learning_rate": 7.597306353045393e-05,
|
134 |
+
"loss": 1.3715,
|
135 |
+
"step": 85
|
136 |
},
|
137 |
{
|
138 |
"epoch": 0.656934306569343,
|
139 |
+
"grad_norm": 0.1169838011264801,
|
140 |
+
"learning_rate": 6.380579461128819e-05,
|
141 |
+
"loss": 1.3859,
|
142 |
+
"step": 90
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.6934306569343066,
|
146 |
+
"grad_norm": 0.10516153275966644,
|
147 |
+
"learning_rate": 5.222801814877369e-05,
|
148 |
+
"loss": 1.368,
|
149 |
+
"step": 95
|
150 |
},
|
151 |
{
|
152 |
"epoch": 0.7299270072992701,
|
153 |
+
"grad_norm": 0.11746218055486679,
|
154 |
+
"learning_rate": 4.142830056718052e-05,
|
155 |
+
"loss": 1.3735,
|
156 |
+
"step": 100
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.7664233576642335,
|
160 |
+
"grad_norm": 0.11317908763885498,
|
161 |
+
"learning_rate": 3.158253610095697e-05,
|
162 |
+
"loss": 1.3675,
|
163 |
+
"step": 105
|
164 |
},
|
165 |
{
|
166 |
"epoch": 0.8029197080291971,
|
167 |
+
"grad_norm": 0.1135973334312439,
|
168 |
+
"learning_rate": 2.2851082017805703e-05,
|
169 |
+
"loss": 1.3633,
|
170 |
+
"step": 110
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.8394160583941606,
|
174 |
+
"grad_norm": 0.11384975910186768,
|
175 |
+
"learning_rate": 1.5376146891235598e-05,
|
176 |
+
"loss": 1.3684,
|
177 |
+
"step": 115
|
178 |
},
|
179 |
{
|
180 |
"epoch": 0.8759124087591241,
|
181 |
+
"grad_norm": 0.10755354166030884,
|
182 |
+
"learning_rate": 9.279474459608805e-06,
|
183 |
+
"loss": 1.3735,
|
184 |
+
"step": 120
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.9124087591240876,
|
188 |
+
"grad_norm": 0.11003435403108597,
|
189 |
+
"learning_rate": 4.660360794506946e-06,
|
190 |
+
"loss": 1.3648,
|
191 |
+
"step": 125
|
192 |
},
|
193 |
{
|
194 |
"epoch": 0.948905109489051,
|
195 |
+
"grad_norm": 0.10320563614368439,
|
196 |
+
"learning_rate": 1.5940370726542863e-06,
|
197 |
+
"loss": 1.3714,
|
198 |
+
"step": 130
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.9854014598540146,
|
202 |
+
"grad_norm": 0.10423589497804642,
|
203 |
+
"learning_rate": 1.3044429107700318e-07,
|
204 |
+
"loss": 1.3703,
|
205 |
+
"step": 135
|
206 |
},
|
207 |
{
|
208 |
+
"epoch": 1.0,
|
209 |
+
"eval_loss": 1.7615731954574585,
|
210 |
+
"eval_runtime": 0.8323,
|
211 |
+
"eval_samples_per_second": 10.813,
|
212 |
+
"eval_steps_per_second": 1.201,
|
213 |
+
"step": 137
|
214 |
},
|
215 |
{
|
216 |
+
"epoch": 1.0,
|
217 |
+
"step": 137,
|
218 |
+
"total_flos": 8.089579620799611e+17,
|
219 |
+
"train_loss": 1.4743173070197557,
|
220 |
+
"train_runtime": 700.8271,
|
221 |
+
"train_samples_per_second": 49.884,
|
222 |
+
"train_steps_per_second": 0.195
|
223 |
}
|
224 |
],
|
225 |
"logging_steps": 5,
|
226 |
+
"max_steps": 137,
|
227 |
"num_input_tokens_seen": 0,
|
228 |
"num_train_epochs": 1,
|
229 |
"save_steps": 100,
|
|
|
239 |
"attributes": {}
|
240 |
}
|
241 |
},
|
242 |
+
"total_flos": 8.089579620799611e+17,
|
243 |
"train_batch_size": 16,
|
244 |
"trial_name": null,
|
245 |
"trial_params": null
|