kleinay commited on
Commit
7188707
·
1 Parent(s): f5334a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -28,7 +28,7 @@ model = transformers.AutoModelForSeq2SeqLM.from_pretrained("kleinay/qanom-seq2se
28
  tokenizer = transformers.AutoTokenizer.from_pretrained("kleinay/qanom-seq2seq-model-baseline")
29
  ```
30
 
31
- However, the model fine-tuning procedure involves input preprocessing (marking the predicate in the sentence, T5's "task prefix", incorporating the predicate type and/or the verbal for of the nominalization) and output postprocessing (parsing the sequence into a list of QASRL-formatted QAs).
32
  In order to use the model for QANom parsing easily, we suggest downloading the [`pipeline.py`](https://huggingface.co/kleinay/qanom-seq2seq-model-joint/blob/main/pipeline.py) file from this repository, and then use the `QASRL_Pipeline` class:
33
 
34
  ```python
 
28
  tokenizer = transformers.AutoTokenizer.from_pretrained("kleinay/qanom-seq2seq-model-baseline")
29
  ```
30
 
31
+ However, the model fine-tuning procedure involves input preprocessing (marking the predicate in the sentence, T5's "task prefix", incorporating the predicate type and/or the verbal form of the nominalization) and output postprocessing (parsing the sequence into a list of QASRL-formatted QAs).
32
  In order to use the model for QANom parsing easily, we suggest downloading the [`pipeline.py`](https://huggingface.co/kleinay/qanom-seq2seq-model-joint/blob/main/pipeline.py) file from this repository, and then use the `QASRL_Pipeline` class:
33
 
34
  ```python