File size: 4,836 Bytes
493c68d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: apache-2.0
base_model: google/mt5-large
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: cs_mT5-large2_0.01_50_v0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cs_mT5-large2_0.01_50_v0.1
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 7.9807
- Bleu: 0.6899
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 2.6703 | 1.0 | 6 | 8.3163 | 0.0 | 19.0 |
| 3.3427 | 2.0 | 12 | 6.5085 | 0.5004 | 19.0 |
| 2.8652 | 3.0 | 18 | 7.0200 | 0.6899 | 19.0 |
| 2.9454 | 4.0 | 24 | 7.3333 | 0.2191 | 19.0 |
| 2.7918 | 5.0 | 30 | 7.5745 | 0.4671 | 12.0 |
| 3.5645 | 6.0 | 36 | 6.3676 | 0.0 | 19.0 |
| 3.0885 | 7.0 | 42 | 7.0359 | 0.6908 | 19.0 |
| 3.5374 | 8.0 | 48 | 6.8709 | 0.1154 | 12.3333 |
| 3.3746 | 9.0 | 54 | 6.4090 | 0.0 | 19.0 |
| 2.5927 | 10.0 | 60 | 6.7357 | 0.6381 | 19.0 |
| 2.581 | 11.0 | 66 | 6.5953 | 0.2635 | 19.0 |
| 4.1786 | 12.0 | 72 | 7.8617 | 0.2068 | 19.0 |
| 2.8545 | 13.0 | 78 | 6.2553 | 0.1628 | 19.0 |
| 2.8925 | 14.0 | 84 | 6.6297 | 0.612 | 19.0 |
| 3.2424 | 15.0 | 90 | 7.0312 | 0.7377 | 19.0 |
| 2.379 | 16.0 | 96 | 6.9121 | 0.6562 | 19.0 |
| 2.2356 | 17.0 | 102 | 6.9446 | 0.2759 | 15.0 |
| 3.0548 | 18.0 | 108 | 7.5770 | 0.1529 | 19.0 |
| 2.4637 | 19.0 | 114 | 7.1444 | 0.4497 | 19.0 |
| 2.96 | 20.0 | 120 | 6.8181 | 0.3779 | 11.0 |
| 2.2016 | 21.0 | 126 | 6.6893 | 0.6562 | 19.0 |
| 1.9774 | 22.0 | 132 | 7.3802 | 0.3807 | 19.0 |
| 1.6734 | 23.0 | 138 | 6.7319 | 0.5405 | 19.0 |
| 3.1958 | 24.0 | 144 | 7.1645 | 1.2379 | 19.0 |
| 3.1363 | 25.0 | 150 | 7.7097 | 0.3794 | 19.0 |
| 2.4353 | 26.0 | 156 | 6.9324 | 0.2522 | 14.0 |
| 2.8675 | 27.0 | 162 | 6.7989 | 0.1488 | 19.0 |
| 1.7486 | 28.0 | 168 | 7.1052 | 0.7123 | 19.0 |
| 2.775 | 29.0 | 174 | 7.0195 | 0.7393 | 19.0 |
| 1.8752 | 30.0 | 180 | 6.9133 | 0.2119 | 19.0 |
| 1.7576 | 31.0 | 186 | 7.2143 | 0.2641 | 19.0 |
| 2.2793 | 32.0 | 192 | 7.0029 | 1.1166 | 19.0 |
| 1.98 | 33.0 | 198 | 6.9954 | 0.5348 | 19.0 |
| 1.4242 | 34.0 | 204 | 7.5163 | 0.2088 | 19.0 |
| 2.413 | 35.0 | 210 | 7.0622 | 0.1433 | 19.0 |
| 1.2191 | 36.0 | 216 | 7.0088 | 0.5307 | 12.0 |
| 1.5944 | 37.0 | 222 | 7.7706 | 0.1948 | 19.0 |
| 1.0044 | 38.0 | 228 | 7.7163 | 0.8485 | 18.4286 |
| 1.4428 | 39.0 | 234 | 7.4919 | 0.6033 | 19.0 |
| 3.0175 | 40.0 | 240 | 7.4158 | 0.5109 | 19.0 |
| 1.3632 | 41.0 | 246 | 6.9819 | 0.4326 | 11.0 |
| 1.8384 | 42.0 | 252 | 7.0156 | 0.6215 | 18.2381 |
| 1.3237 | 43.0 | 258 | 7.2082 | 0.4826 | 19.0 |
| 1.1516 | 44.0 | 264 | 7.5088 | 0.4745 | 18.8571 |
| 1.3893 | 45.0 | 270 | 7.7298 | 0.4527 | 19.0 |
| 1.0125 | 46.0 | 276 | 7.8458 | 0.832 | 14.0 |
| 0.8954 | 47.0 | 282 | 7.9101 | 0.7754 | 17.5714 |
| 1.8111 | 48.0 | 288 | 7.9713 | 0.6899 | 19.0 |
| 1.2008 | 49.0 | 294 | 7.9821 | 0.6899 | 19.0 |
| 1.5131 | 50.0 | 300 | 7.9807 | 0.6899 | 19.0 |
### Framework versions
- Transformers 4.35.2
- Pytorch 1.13.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.2
|