kmposkid1 commited on
Commit
c3bc089
·
1 Parent(s): 3a9c95e

LightGBM version initial commit

Browse files
LightGBM_without_hospital_number_01.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa3213dda9c5786109a231119bd5c0abeff8291ab8e89cb1c0df553a8b1e1406
3
+ size 269820
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_format: pickle
9
+ model_file: LightGBM_without_hospital_number_01.pkl
10
+ widget:
11
+ structuredData:
12
+ abdomen:
13
+ - distend_small
14
+ - distend_small
15
+ - distend_large
16
+ abdominal_distention:
17
+ - none
18
+ - none
19
+ - moderate
20
+ abdomo_appearance:
21
+ - serosanguious
22
+ - cloudy
23
+ - serosanguious
24
+ abdomo_protein:
25
+ - 4.1
26
+ - 4.3
27
+ - 2.0
28
+ age:
29
+ - adult
30
+ - adult
31
+ - adult
32
+ capillary_refill_time:
33
+ - less_3_sec
34
+ - less_3_sec
35
+ - more_3_sec
36
+ cp_data:
37
+ - 'yes'
38
+ - 'yes'
39
+ - 'no'
40
+ lesion_1:
41
+ - 7209
42
+ - 2112
43
+ - 5400
44
+ lesion_2:
45
+ - 0
46
+ - 0
47
+ - 0
48
+ lesion_3:
49
+ - 0
50
+ - 0
51
+ - 0
52
+ mucous_membrane:
53
+ - bright_pink
54
+ - bright_pink
55
+ - dark_cyanotic
56
+ nasogastric_reflux:
57
+ - none
58
+ - none
59
+ - more_1_liter
60
+ nasogastric_reflux_ph:
61
+ - 7.0
62
+ - 3.5
63
+ - 2.0
64
+ nasogastric_tube:
65
+ - slight
66
+ - none
67
+ - significant
68
+ packed_cell_volume:
69
+ - 37.0
70
+ - 44.0
71
+ - 65.0
72
+ pain:
73
+ - depressed
74
+ - mild_pain
75
+ - extreme_pain
76
+ peripheral_pulse:
77
+ - normal
78
+ - normal
79
+ - reduced
80
+ peristalsis:
81
+ - hypermotile
82
+ - hypomotile
83
+ - absent
84
+ pulse:
85
+ - 84.0
86
+ - 66.0
87
+ - 72.0
88
+ rectal_exam_feces:
89
+ - absent
90
+ - decreased
91
+ - absent
92
+ rectal_temp:
93
+ - 39.0
94
+ - 38.5
95
+ - 37.3
96
+ respiratory_rate:
97
+ - 24.0
98
+ - 21.0
99
+ - 30.0
100
+ surgery:
101
+ - 'yes'
102
+ - 'yes'
103
+ - 'yes'
104
+ surgical_lesion:
105
+ - 'yes'
106
+ - 'yes'
107
+ - 'yes'
108
+ temp_of_extremities:
109
+ - cool
110
+ - normal
111
+ - cool
112
+ total_protein:
113
+ - 6.5
114
+ - 7.6
115
+ - 13.0
116
+ ---
117
+
118
+ # Model description
119
+
120
+ This is a `LightGBM` model trained on horse health outcome data from Kaggle.
121
+
122
+ ## Intended uses & limitations
123
+
124
+ This model is not ready to be used in production.
125
+
126
+ ## Training Procedure
127
+
128
+ [More Information Needed]
129
+
130
+ ### Hyperparameters
131
+
132
+ <details>
133
+ <summary> Click to expand </summary>
134
+
135
+ | Hyperparameter | Value |
136
+ |--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
137
+ | memory | |
138
+ | steps | [('preprocessor', ColumnTransformer(remainder='passthrough',<br /> transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler())]),<br /> ['rectal_temp', 'pulse', 'respiratory_rate',<br /> 'nasogastric_reflux_ph', 'packed_cell_volume',<br /> 'total_protein', 'abdomo_protein', 'lesion_1',<br /> 'lesion_2', 'lesion_3']),<br /> ('cat',<br /> Pipeline(steps=[('imputer',<br /> SimpleI...='missing',<br /> strategy='constant')),<br /> ('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['surgery', 'age', 'temp_of_extremities',<br /> 'peripheral_pulse', 'mucous_membrane',<br /> 'capillary_refill_time', 'pain',<br /> 'peristalsis', 'abdominal_distention',<br /> 'nasogastric_tube', 'nasogastric_reflux',<br /> 'rectal_exam_feces', 'abdomen',<br /> 'abdomo_appearance', 'surgical_lesion',<br /> 'cp_data'])])), ('classifier', LGBMClassifier(max_depth=3))] |
139
+ | verbose | False |
140
+ | preprocessor | ColumnTransformer(remainder='passthrough',<br /> transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler())]),<br /> ['rectal_temp', 'pulse', 'respiratory_rate',<br /> 'nasogastric_reflux_ph', 'packed_cell_volume',<br /> 'total_protein', 'abdomo_protein', 'lesion_1',<br /> 'lesion_2', 'lesion_3']),<br /> ('cat',<br /> Pipeline(steps=[('imputer',<br /> SimpleI...='missing',<br /> strategy='constant')),<br /> ('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['surgery', 'age', 'temp_of_extremities',<br /> 'peripheral_pulse', 'mucous_membrane',<br /> 'capillary_refill_time', 'pain',<br /> 'peristalsis', 'abdominal_distention',<br /> 'nasogastric_tube', 'nasogastric_reflux',<br /> 'rectal_exam_feces', 'abdomen',<br /> 'abdomo_appearance', 'surgical_lesion',<br /> 'cp_data'])]) |
141
+ | classifier | LGBMClassifier(max_depth=3) |
142
+ | preprocessor__n_jobs | |
143
+ | preprocessor__remainder | passthrough |
144
+ | preprocessor__sparse_threshold | 0.3 |
145
+ | preprocessor__transformer_weights | |
146
+ | preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler())]), ['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']), ('cat', Pipeline(steps=[('imputer',<br /> SimpleImputer(fill_value='missing', strategy='constant')),<br /> ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data'])] |
147
+ | preprocessor__verbose | False |
148
+ | preprocessor__verbose_feature_names_out | True |
149
+ | preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler())]) |
150
+ | preprocessor__cat | Pipeline(steps=[('imputer',<br /> SimpleImputer(fill_value='missing', strategy='constant')),<br /> ('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
151
+ | preprocessor__num__memory | |
152
+ | preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())] |
153
+ | preprocessor__num__verbose | False |
154
+ | preprocessor__num__imputer | SimpleImputer(strategy='median') |
155
+ | preprocessor__num__scaler | StandardScaler() |
156
+ | preprocessor__num__imputer__add_indicator | False |
157
+ | preprocessor__num__imputer__copy | True |
158
+ | preprocessor__num__imputer__fill_value | |
159
+ | preprocessor__num__imputer__keep_empty_features | False |
160
+ | preprocessor__num__imputer__missing_values | nan |
161
+ | preprocessor__num__imputer__strategy | median |
162
+ | preprocessor__num__scaler__copy | True |
163
+ | preprocessor__num__scaler__with_mean | True |
164
+ | preprocessor__num__scaler__with_std | True |
165
+ | preprocessor__cat__memory | |
166
+ | preprocessor__cat__steps | [('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))] |
167
+ | preprocessor__cat__verbose | False |
168
+ | preprocessor__cat__imputer | SimpleImputer(fill_value='missing', strategy='constant') |
169
+ | preprocessor__cat__onehot | OneHotEncoder(handle_unknown='ignore') |
170
+ | preprocessor__cat__imputer__add_indicator | False |
171
+ | preprocessor__cat__imputer__copy | True |
172
+ | preprocessor__cat__imputer__fill_value | missing |
173
+ | preprocessor__cat__imputer__keep_empty_features | False |
174
+ | preprocessor__cat__imputer__missing_values | nan |
175
+ | preprocessor__cat__imputer__strategy | constant |
176
+ | preprocessor__cat__onehot__categories | auto |
177
+ | preprocessor__cat__onehot__drop | |
178
+ | preprocessor__cat__onehot__dtype | <class 'numpy.float64'> |
179
+ | preprocessor__cat__onehot__feature_name_combiner | concat |
180
+ | preprocessor__cat__onehot__handle_unknown | ignore |
181
+ | preprocessor__cat__onehot__max_categories | |
182
+ | preprocessor__cat__onehot__min_frequency | |
183
+ | preprocessor__cat__onehot__sparse | deprecated |
184
+ | preprocessor__cat__onehot__sparse_output | True |
185
+ | classifier__boosting_type | gbdt |
186
+ | classifier__class_weight | |
187
+ | classifier__colsample_bytree | 1.0 |
188
+ | classifier__importance_type | split |
189
+ | classifier__learning_rate | 0.1 |
190
+ | classifier__max_depth | 3 |
191
+ | classifier__min_child_samples | 20 |
192
+ | classifier__min_child_weight | 0.001 |
193
+ | classifier__min_split_gain | 0.0 |
194
+ | classifier__n_estimators | 100 |
195
+ | classifier__n_jobs | |
196
+ | classifier__num_leaves | 31 |
197
+ | classifier__objective | |
198
+ | classifier__random_state | |
199
+ | classifier__reg_alpha | 0.0 |
200
+ | classifier__reg_lambda | 0.0 |
201
+ | classifier__subsample | 1.0 |
202
+ | classifier__subsample_for_bin | 200000 |
203
+ | classifier__subsample_freq | 0 |
204
+
205
+ </details>
206
+
207
+ ### Model Plot
208
+
209
+ <style>#sk-container-id-3 {color: black;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,StandardScaler())]),[&#x27;rectal_temp&#x27;, &#x27;pulse&#x27;,&#x27;respiratory_rate&#x27;,&#x27;nasogastric_reflux_ph&#x27;,&#x27;packed_cell_volume&#x27;,&#x27;total_protein&#x27;,&#x27;abdomo_protein&#x27;, &#x27;lesion_1&#x27;,&#x27;lesion_2&#x27;, &#x27;lesion_3&#x27;]),(&#x27;cat&#x27;,Pi...OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;surgery&#x27;, &#x27;age&#x27;,&#x27;temp_of_extremities&#x27;,&#x27;peripheral_pulse&#x27;,&#x27;mucous_membrane&#x27;,&#x27;capillary_refill_time&#x27;,&#x27;pain&#x27;, &#x27;peristalsis&#x27;,&#x27;abdominal_distention&#x27;,&#x27;nasogastric_tube&#x27;,&#x27;nasogastric_reflux&#x27;,&#x27;rectal_exam_feces&#x27;,&#x27;abdomen&#x27;,&#x27;abdomo_appearance&#x27;,&#x27;surgical_lesion&#x27;,&#x27;cp_data&#x27;])])),(&#x27;classifier&#x27;, LGBMClassifier(max_depth=3))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-23" type="checkbox" ><label for="sk-estimator-id-23" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,StandardScaler())]),[&#x27;rectal_temp&#x27;, &#x27;pulse&#x27;,&#x27;respiratory_rate&#x27;,&#x27;nasogastric_reflux_ph&#x27;,&#x27;packed_cell_volume&#x27;,&#x27;total_protein&#x27;,&#x27;abdomo_protein&#x27;, &#x27;lesion_1&#x27;,&#x27;lesion_2&#x27;, &#x27;lesion_3&#x27;]),(&#x27;cat&#x27;,Pi...OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;surgery&#x27;, &#x27;age&#x27;,&#x27;temp_of_extremities&#x27;,&#x27;peripheral_pulse&#x27;,&#x27;mucous_membrane&#x27;,&#x27;capillary_refill_time&#x27;,&#x27;pain&#x27;, &#x27;peristalsis&#x27;,&#x27;abdominal_distention&#x27;,&#x27;nasogastric_tube&#x27;,&#x27;nasogastric_reflux&#x27;,&#x27;rectal_exam_feces&#x27;,&#x27;abdomen&#x27;,&#x27;abdomo_appearance&#x27;,&#x27;surgical_lesion&#x27;,&#x27;cp_data&#x27;])])),(&#x27;classifier&#x27;, LGBMClassifier(max_depth=3))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-24" type="checkbox" ><label for="sk-estimator-id-24" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, StandardScaler())]),[&#x27;rectal_temp&#x27;, &#x27;pulse&#x27;, &#x27;respiratory_rate&#x27;,&#x27;nasogastric_reflux_ph&#x27;, &#x27;packed_cell_volume&#x27;,&#x27;total_protein&#x27;, &#x27;abdomo_protein&#x27;, &#x27;lesion_1&#x27;,&#x27;lesion_2&#x27;, &#x27;lesion_3&#x27;]),(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleI...=&#x27;missing&#x27;,strategy=&#x27;constant&#x27;)),(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;surgery&#x27;, &#x27;age&#x27;, &#x27;temp_of_extremities&#x27;,&#x27;peripheral_pulse&#x27;, &#x27;mucous_membrane&#x27;,&#x27;capillary_refill_time&#x27;, &#x27;pain&#x27;,&#x27;peristalsis&#x27;, &#x27;abdominal_distention&#x27;,&#x27;nasogastric_tube&#x27;, &#x27;nasogastric_reflux&#x27;,&#x27;rectal_exam_feces&#x27;, &#x27;abdomen&#x27;,&#x27;abdomo_appearance&#x27;, &#x27;surgical_lesion&#x27;,&#x27;cp_data&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-25" type="checkbox" ><label for="sk-estimator-id-25" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>[&#x27;rectal_temp&#x27;, &#x27;pulse&#x27;, &#x27;respiratory_rate&#x27;, &#x27;nasogastric_reflux_ph&#x27;, &#x27;packed_cell_volume&#x27;, &#x27;total_protein&#x27;, &#x27;abdomo_protein&#x27;, &#x27;lesion_1&#x27;, &#x27;lesion_2&#x27;, &#x27;lesion_3&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-26" type="checkbox" ><label for="sk-estimator-id-26" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-27" type="checkbox" ><label for="sk-estimator-id-27" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-28" type="checkbox" ><label for="sk-estimator-id-28" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;surgery&#x27;, &#x27;age&#x27;, &#x27;temp_of_extremities&#x27;, &#x27;peripheral_pulse&#x27;, &#x27;mucous_membrane&#x27;, &#x27;capillary_refill_time&#x27;, &#x27;pain&#x27;, &#x27;peristalsis&#x27;, &#x27;abdominal_distention&#x27;, &#x27;nasogastric_tube&#x27;, &#x27;nasogastric_reflux&#x27;, &#x27;rectal_exam_feces&#x27;, &#x27;abdomen&#x27;, &#x27;abdomo_appearance&#x27;, &#x27;surgical_lesion&#x27;, &#x27;cp_data&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-29" type="checkbox" ><label for="sk-estimator-id-29" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(fill_value=&#x27;missing&#x27;, strategy=&#x27;constant&#x27;)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-30" type="checkbox" ><label for="sk-estimator-id-30" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-31" type="checkbox" ><label for="sk-estimator-id-31" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-32" type="checkbox" ><label for="sk-estimator-id-32" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-33" type="checkbox" ><label for="sk-estimator-id-33" class="sk-toggleable__label sk-toggleable__label-arrow">LGBMClassifier</label><div class="sk-toggleable__content"><pre>LGBMClassifier(max_depth=3)</pre></div></div></div></div></div></div></div>
210
+
211
+ ## Evaluation Results
212
+
213
+ | Metric | Value |
214
+ |----------|----------|
215
+ | accuracy | 0.740891 |
216
+ | f1 score | 0.740891 |
217
+
218
+ ### Confusion Matrix
219
+
220
+ ![Confusion Matrix](confusion_matrix.png)
221
+
222
+ # How to Get Started with the Model
223
+
224
+ [More Information Needed]
225
+
226
+ # Model Card Authors
227
+
228
+ kmposkid
229
+
230
+ # Model Card Contact
231
+
232
+ You can contact the model card authors through following channels:
233
+ [More Information Needed]
234
+
235
+ # Citation
236
+
237
+ Below you can find information related to citation.
238
+
239
+ **BibTeX:**
240
+ ```
241
+ [More Information Needed]
242
+ ```
config.json ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "surgery",
5
+ "age",
6
+ "rectal_temp",
7
+ "pulse",
8
+ "respiratory_rate",
9
+ "temp_of_extremities",
10
+ "peripheral_pulse",
11
+ "mucous_membrane",
12
+ "capillary_refill_time",
13
+ "pain",
14
+ "peristalsis",
15
+ "abdominal_distention",
16
+ "nasogastric_tube",
17
+ "nasogastric_reflux",
18
+ "nasogastric_reflux_ph",
19
+ "rectal_exam_feces",
20
+ "abdomen",
21
+ "packed_cell_volume",
22
+ "total_protein",
23
+ "abdomo_appearance",
24
+ "abdomo_protein",
25
+ "surgical_lesion",
26
+ "lesion_1",
27
+ "lesion_2",
28
+ "lesion_3",
29
+ "cp_data"
30
+ ],
31
+ "environment": [
32
+ "scikit-learn=1.3.0",
33
+ "lightgbm==4.1.0"
34
+ ],
35
+ "example_input": {
36
+ "abdomen": [
37
+ "distend_small",
38
+ "distend_small",
39
+ "distend_large"
40
+ ],
41
+ "abdominal_distention": [
42
+ "none",
43
+ "none",
44
+ "moderate"
45
+ ],
46
+ "abdomo_appearance": [
47
+ "serosanguious",
48
+ "cloudy",
49
+ "serosanguious"
50
+ ],
51
+ "abdomo_protein": [
52
+ 4.1,
53
+ 4.3,
54
+ 2.0
55
+ ],
56
+ "age": [
57
+ "adult",
58
+ "adult",
59
+ "adult"
60
+ ],
61
+ "capillary_refill_time": [
62
+ "less_3_sec",
63
+ "less_3_sec",
64
+ "more_3_sec"
65
+ ],
66
+ "cp_data": [
67
+ "yes",
68
+ "yes",
69
+ "no"
70
+ ],
71
+ "lesion_1": [
72
+ 7209,
73
+ 2112,
74
+ 5400
75
+ ],
76
+ "lesion_2": [
77
+ 0,
78
+ 0,
79
+ 0
80
+ ],
81
+ "lesion_3": [
82
+ 0,
83
+ 0,
84
+ 0
85
+ ],
86
+ "mucous_membrane": [
87
+ "bright_pink",
88
+ "bright_pink",
89
+ "dark_cyanotic"
90
+ ],
91
+ "nasogastric_reflux": [
92
+ "none",
93
+ "none",
94
+ "more_1_liter"
95
+ ],
96
+ "nasogastric_reflux_ph": [
97
+ 7.0,
98
+ 3.5,
99
+ 2.0
100
+ ],
101
+ "nasogastric_tube": [
102
+ "slight",
103
+ "none",
104
+ "significant"
105
+ ],
106
+ "packed_cell_volume": [
107
+ 37.0,
108
+ 44.0,
109
+ 65.0
110
+ ],
111
+ "pain": [
112
+ "depressed",
113
+ "mild_pain",
114
+ "extreme_pain"
115
+ ],
116
+ "peripheral_pulse": [
117
+ "normal",
118
+ "normal",
119
+ "reduced"
120
+ ],
121
+ "peristalsis": [
122
+ "hypermotile",
123
+ "hypomotile",
124
+ "absent"
125
+ ],
126
+ "pulse": [
127
+ 84.0,
128
+ 66.0,
129
+ 72.0
130
+ ],
131
+ "rectal_exam_feces": [
132
+ "absent",
133
+ "decreased",
134
+ "absent"
135
+ ],
136
+ "rectal_temp": [
137
+ 39.0,
138
+ 38.5,
139
+ 37.3
140
+ ],
141
+ "respiratory_rate": [
142
+ 24.0,
143
+ 21.0,
144
+ 30.0
145
+ ],
146
+ "surgery": [
147
+ "yes",
148
+ "yes",
149
+ "yes"
150
+ ],
151
+ "surgical_lesion": [
152
+ "yes",
153
+ "yes",
154
+ "yes"
155
+ ],
156
+ "temp_of_extremities": [
157
+ "cool",
158
+ "normal",
159
+ "cool"
160
+ ],
161
+ "total_protein": [
162
+ 6.5,
163
+ 7.6,
164
+ 13.0
165
+ ]
166
+ },
167
+ "model": {
168
+ "file": "LightGBM_without_hospital_number_01.pkl"
169
+ },
170
+ "model_format": "pickle",
171
+ "task": "tabular-classification",
172
+ "use_intelex": false
173
+ }
174
+ }
confusion_matrix.png ADDED