kmposkid1 commited on
Commit
2bbe6b2
1 Parent(s): 7f7066a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1199.50 +/- 42.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9315ab75d3c757e00230da3e7fb46d816588b40bd698b574cd29cafd29689b54
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca8d651940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca8d6519d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca8d651a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca8d651af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fca8d651b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fca8d651c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca8d651ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca8d651d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fca8d651dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca8d651e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca8d651ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca8d651f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fca8d64fd80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679924818658337205,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN2meb8SPIc+vT/UPsLXkj8vGuq/0WWaPgnbI7/yrNS+ALZZP0uhor4g0Cm+SJSPv0TMur/d9BA9sExCP1AOdj9blba+GAKSvz+6Fj/ctjg9lQoWP5ceBL9OeqM+4uWHPwiWmD9OiAc/kv2dPjW3Hj/M06K/WiezPtpssz6PP5+/vlS+vi/87D1tB7c9Rnp8Ph2zfryIzwC+sOg+v9zcF74SuLm/Vfa4uvYIkj70pTK+mKA4v0INMz7bIRg/92LYvJvrgj8cODu9EuYKv6TYF749wFa/TogHP5L9nT41tx4/09I2v905xz1xSAU/B7qZP8alcL4qgES//pswPRnLsD/js5U/rTaSPwbLCL7CvJE9i0+QP37L1r9ch/W+hhyHQDOhDr9vOWC/fzo7v/RszD80a7e/ggAkvyvVSr+HkBo/PcBWv06IBz+kZ0/ANbceP0ascrxXbx8/8iHEPeXiGrwdTTY+XknqPuUaPT+uk+m9nSgJvmROqT08HD6/XFX9u2txF78nEQY/rP8dv34S8b3gOE++H06YPmL8Fj89JAw8AshYvv6c2L3XZ5e+mTYtvT3AVr9OiAc/kv2dPjW3Hj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGvAE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF5tQvQAAAADmkdq/AAAAALhhnboAAAAAMWP9PwAAAAAftVq9AAAAAEZ13D8AAAAARqe0vQAAAACDWfG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnC4NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAqrB70AAAAA+EoBwAAAAADJl7I9AAAAAOEUAEAAAAAABr6qPAAAAABY8/4/AAAAAJMBv70AAAAAb7brvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKO8obYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAjjOS8AAAAAJ0I9b8AAAAA53PDvQAAAAC5Pto/AAAAAKoJIr0AAAAAzz/ZPwAAAAC5y8s9AAAAAGyv5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGYbu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHgLsPQAAAAA2fem/AAAAAJmtCT0AAAAANFThPwAAAABJf669AAAAAP49+D8AAAAAm0iXPQAAAABb3Pa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIIbN5dGAmMAWyUTegDjAF0lEdAqtjBJsfq5nV9lChoBkdAkcZlrIo3JmgHTegDaAhHQKrbeTB68g91fZQoaAZHQJHcGZkTYd1oB03oA2gIR0Cq27XtjTa1dX2UKGgGR0CRBsdUKiPAaAdN6ANoCEdAqt1Md3jdYXV9lChoBkdAkfmpYLb5/WgHTegDaAhHQKrnrw7T2Fp1fZQoaAZHQJJCW6f8MuxoB03oA2gIR0Cq6yFYU34sdX2UKGgGR0CSluLFXJYDaAdN6ANoCEdAqutVdJJ5FHV9lChoBkdAkts3Heaa1GgHTegDaAhHQKrs5Jaq0dB1fZQoaAZHQJKu8kIHC41oB03oA2gIR0Cq9BCRGMGYdX2UKGgGR0CRcCUhmoR7aAdN6ANoCEdAqva7DqGDc3V9lChoBkdAkvKVdTo+wGgHTegDaAhHQKr27Z4fOlh1fZQoaAZHQJOX7V3EAHVoB03oA2gIR0Cq+JEGiYb9dX2UKGgGR0CTeomShakiaAdN6ANoCEdAqwFqJj2Ba3V9lChoBkdAk2o5GnXNDGgHTegDaAhHQKsF6xGlQ/J1fZQoaAZHQJGYD19ORDFoB03oA2gIR0CrBkQ1ivxIdX2UKGgGR0CTDmEwnH/+aAdN6ANoCEdAqwjFBppN9HV9lChoBkdAkl8pM6BAfWgHTegDaAhHQKsQTeWv8qF1fZQoaAZHQJPK1NN8E3doB03oA2gIR0CrEw+j/MnrdX2UKGgGR0CTVAvq1PWQaAdN6ANoCEdAqxNCWZ7Xx3V9lChoBkdAlBBq1PWQOmgHTegDaAhHQKsU5ZNfw7V1fZQoaAZHQJJE4yckMThoB03oA2gIR0CrHDZvDP4VdX2UKGgGR0CS0FfHxSYPaAdN6ANoCEdAqyA/8MuvlnV9lChoBkdAkvRYv38GcGgHTegDaAhHQKsglY6GQCF1fZQoaAZHQJKkniS7oStoB03oA2gIR0CrIzMZ5zHTdX2UKGgGR0CRxUgzguRLaAdN6ANoCEdAqywMpTdcjnV9lChoBkdAkTmrcj7hvWgHTegDaAhHQKsu1V94NZx1fZQoaAZHQJIVy9/SYw9oB03oA2gIR0CrLwhEa2nbdX2UKGgGR0CRgmftx+8XaAdN6ANoCEdAqzCc1Muez3V9lChoBkdAkyCBZyMkyGgHTegDaAhHQKs3/pxm03R1fZQoaAZHQJTyBFrl/6RoB03oA2gIR0CrOrl1SwW4dX2UKGgGR0CT7U4//vORaAdN6ANoCEdAqzsEb1h9cHV9lChoBkdAlAatGI9C/2gHTegDaAhHQKs9aVO9FnZ1fZQoaAZHQJR8q+M6zVtoB03oA2gIR0CrR9YNAkcCdX2UKGgGR0CTTleqaPS2aAdN6ANoCEdAq0qjmCAc1nV9lChoBkdAk3EDqSowVWgHTegDaAhHQKtK1xXnyNJ1fZQoaAZHQJObA2P1ct5oB03oA2gIR0CrTI4Ds+mndX2UKGgGR0CTQAPxQSBcaAdN6ANoCEdAq1QDbDdgv3V9lChoBkdAkp6dsWO6umgHTegDaAhHQKtW4iN83Mp1fZQoaAZHQJMV7MLWqcVoB03oA2gIR0CrVxeqR2bHdX2UKGgGR0CStHSS/0ulaAdN6ANoCEdAq1i+pyZKF3V9lChoBkdAlCUQ1BMSK2gHTegDaAhHQKtj4FtbcGl1fZQoaAZHQJQAjefqX4VoB03oA2gIR0CrZn1JUYKqdX2UKGgGR0CUMMhRZU1iaAdN6ANoCEdAq2axMJx//nV9lChoBkdAk8OhwhnrZGgHTegDaAhHQKtoTlRxcVx1fZQoaAZHQJWj0FnqVyFoB03oA2gIR0Crb7xvvSc9dX2UKGgGR0CUiaMrmQr+aAdN6ANoCEdAq3J+Tot+TnV9lChoBkdAk5FENnXd02gHTegDaAhHQKtytG8VYZF1fZQoaAZHQJUir0HyEtdoB03oA2gIR0CrdGwsGxD9dX2UKGgGR0CU/ENlAeJYaAdN6ANoCEdAq345vBJqZnV9lChoBkdAljte/L1VYWgHTegDaAhHQKuCc8J2MbZ1fZQoaAZHQJWBbj4pMHtoB03oA2gIR0CrgqdGI9DAdX2UKGgGR0CVwzkona37aAdN6ANoCEdAq4Q1eD3/P3V9lChoBkdAlOlPKlpGnWgHTegDaAhHQKuLkBEroW51fZQoaAZHQJR56KdhAnloB03oA2gIR0Crjkf1HvtudX2UKGgGR0CVc99ORDCxaAdN6ANoCEdAq45/TkQwsXV9lChoBkdAlRGYLb5/LGgHTegDaAhHQKuQHDn/1g91fZQoaAZHQJU7SPJaJRBoB03oA2gIR0CrmDM+/xlQdX2UKGgGR0CUoEw3HaN/aAdN6ANoCEdAq5x0TSLIgnV9lChoBkdAlTZr7bcoIGgHTegDaAhHQKucyxHoX9B1fZQoaAZHQJW7cNb1RLtoB03oA2gIR0Crn21sDW9UdX2UKGgGR0CWycRSgoPTaAdN6ANoCEdAq6bz987ZF3V9lChoBkdAlIbTI7vG62gHTegDaAhHQKupltkWhyt1fZQoaAZHQJYH3iGWUr1oB03oA2gIR0CrqcyiVSn+dX2UKGgGR0CUD1fEXLvDaAdN6ANoCEdAq6tmlfqoqHV9lChoBkdAlOBP/io86mgHTegDaAhHQKuy7ZL7Ged1fZQoaAZHQJZJnP3SKFZoB03oA2gIR0Crtl+sHSncdX2UKGgGR0CWAb6DXe3yaAdN6ANoCEdAq7a1nM+u/3V9lChoBkdAlgPkt29tdmgHTegDaAhHQKu5QXAM2FZ1fZQoaAZHQJZZxikO7QNoB03oA2gIR0Crwz2HDaXbdX2UKGgGR0CV1zgvUSZjaAdN6ANoCEdAq8YAiu+yq3V9lChoBkdAlkOmDL8rJGgHTegDaAhHQKvGNiDujRF1fZQoaAZHQJYlT3bmEGtoB03oA2gIR0Crx9C79Q40dX2UKGgGR0CSrmza9K28aAdN6ANoCEdAq88hlcyFf3V9lChoBkdAk8FXSKFZgWgHTegDaAhHQKvRzrsSkCV1fZQoaAZHQJPOoGVzIWBoB03oA2gIR0Cr0gTND+irdX2UKGgGR0CVJkW3z+WGaAdN6ANoCEdAq9OyBNEgGXV9lChoBkdAkm85zgdfcGgHTegDaAhHQKvevgP3BYV1fZQoaAZHQJT/pNXYDkloB03oA2gIR0Cr4X1ejVQRdX2UKGgGR0CTe4Fh5PdmaAdN6ANoCEdAq+GxsQ/X5HV9lChoBkdAkrpxnBciW2gHTegDaAhHQKvjREpiI+J1fZQoaAZHQJSfdkI5YHRoB03oA2gIR0Cr6nK20AtGdX2UKGgGR0CUkGhh6SkkaAdN6ANoCEdAq+1e9i+cpnV9lChoBkdAk5tXrUsnRmgHTegDaAhHQKvtmUSIxg11fZQoaAZHQJIj2+ZgG8poB03oA2gIR0Cr71YcWCVbdX2UKGgGR0CTjhz6ab4KaAdN6ANoCEdAq/muDJ2dNHV9lChoBkdAk10Mo6S1V2gHTegDaAhHQKv9bLuhK151fZQoaAZHQJGktuO0b99oB03oA2gIR0Cr/Z83Mpw0dX2UKGgGR0CUE4XTmW+oaAdN6ANoCEdAq/9JIlMRH3V9lChoBkdAkuMKS1Vo6GgHTegDaAhHQKwGmpT/ACZ1fZQoaAZHQJTYq4lQdjpoB03oA2gIR0CsCTpZntfHdX2UKGgGR0CSxvmois4laAdN6ANoCEdArAlvJkoWpXV9lChoBkdAlFubVWjoIWgHTegDaAhHQKwLF+YtxuN1fZQoaAZHQJICwEdNnGtoB03oA2gIR0CsE7jQiRnwdX2UKGgGR0CUSOl9BrvcaAdN6ANoCEdArBguyiVSoHV9lChoBkdAk90qI7/4qWgHTegDaAhHQKwYiEEkjX51fZQoaAZHQJGmDO3UhFFoB03oA2gIR0CsGynO8kD7dX2UKGgGR0CSyP8tPHktaAdN6ANoCEdArCK1ehPCVXV9lChoBkdAkNS+GTLW7WgHTegDaAhHQKwlZD4xk/d1fZQoaAZHQJMOmXhOxjdoB03oA2gIR0CsJZgQxvehdX2UKGgGR0CSH0O0b961aAdN6ANoCEdArCcvcQAdXHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38a13ac8f36b727562f39925f5b15e0cdb7f0180fdf3b72c74e43e94b6557f7d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eca928032b4d2b62836d75cce21882044486b4e4b80d8ed5592864dded7ed842
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca8d651940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca8d6519d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca8d651a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca8d651af0>", "_build": "<function ActorCriticPolicy._build at 0x7fca8d651b80>", "forward": "<function ActorCriticPolicy.forward at 0x7fca8d651c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca8d651ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca8d651d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca8d651dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca8d651e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca8d651ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca8d651f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fca8d64fd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679924818658337205, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN2meb8SPIc+vT/UPsLXkj8vGuq/0WWaPgnbI7/yrNS+ALZZP0uhor4g0Cm+SJSPv0TMur/d9BA9sExCP1AOdj9blba+GAKSvz+6Fj/ctjg9lQoWP5ceBL9OeqM+4uWHPwiWmD9OiAc/kv2dPjW3Hj/M06K/WiezPtpssz6PP5+/vlS+vi/87D1tB7c9Rnp8Ph2zfryIzwC+sOg+v9zcF74SuLm/Vfa4uvYIkj70pTK+mKA4v0INMz7bIRg/92LYvJvrgj8cODu9EuYKv6TYF749wFa/TogHP5L9nT41tx4/09I2v905xz1xSAU/B7qZP8alcL4qgES//pswPRnLsD/js5U/rTaSPwbLCL7CvJE9i0+QP37L1r9ch/W+hhyHQDOhDr9vOWC/fzo7v/RszD80a7e/ggAkvyvVSr+HkBo/PcBWv06IBz+kZ0/ANbceP0ascrxXbx8/8iHEPeXiGrwdTTY+XknqPuUaPT+uk+m9nSgJvmROqT08HD6/XFX9u2txF78nEQY/rP8dv34S8b3gOE++H06YPmL8Fj89JAw8AshYvv6c2L3XZ5e+mTYtvT3AVr9OiAc/kv2dPjW3Hj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGvAE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF5tQvQAAAADmkdq/AAAAALhhnboAAAAAMWP9PwAAAAAftVq9AAAAAEZ13D8AAAAARqe0vQAAAACDWfG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnC4NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAqrB70AAAAA+EoBwAAAAADJl7I9AAAAAOEUAEAAAAAABr6qPAAAAABY8/4/AAAAAJMBv70AAAAAb7brvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKO8obYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAjjOS8AAAAAJ0I9b8AAAAA53PDvQAAAAC5Pto/AAAAAKoJIr0AAAAAzz/ZPwAAAAC5y8s9AAAAAGyv5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGYbu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHgLsPQAAAAA2fem/AAAAAJmtCT0AAAAANFThPwAAAABJf669AAAAAP49+D8AAAAAm0iXPQAAAABb3Pa/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIIbN5dGAmMAWyUTegDjAF0lEdAqtjBJsfq5nV9lChoBkdAkcZlrIo3JmgHTegDaAhHQKrbeTB68g91fZQoaAZHQJHcGZkTYd1oB03oA2gIR0Cq27XtjTa1dX2UKGgGR0CRBsdUKiPAaAdN6ANoCEdAqt1Md3jdYXV9lChoBkdAkfmpYLb5/WgHTegDaAhHQKrnrw7T2Fp1fZQoaAZHQJJCW6f8MuxoB03oA2gIR0Cq6yFYU34sdX2UKGgGR0CSluLFXJYDaAdN6ANoCEdAqutVdJJ5FHV9lChoBkdAkts3Heaa1GgHTegDaAhHQKrs5Jaq0dB1fZQoaAZHQJKu8kIHC41oB03oA2gIR0Cq9BCRGMGYdX2UKGgGR0CRcCUhmoR7aAdN6ANoCEdAqva7DqGDc3V9lChoBkdAkvKVdTo+wGgHTegDaAhHQKr27Z4fOlh1fZQoaAZHQJOX7V3EAHVoB03oA2gIR0Cq+JEGiYb9dX2UKGgGR0CTeomShakiaAdN6ANoCEdAqwFqJj2Ba3V9lChoBkdAk2o5GnXNDGgHTegDaAhHQKsF6xGlQ/J1fZQoaAZHQJGYD19ORDFoB03oA2gIR0CrBkQ1ivxIdX2UKGgGR0CTDmEwnH/+aAdN6ANoCEdAqwjFBppN9HV9lChoBkdAkl8pM6BAfWgHTegDaAhHQKsQTeWv8qF1fZQoaAZHQJPK1NN8E3doB03oA2gIR0CrEw+j/MnrdX2UKGgGR0CTVAvq1PWQaAdN6ANoCEdAqxNCWZ7Xx3V9lChoBkdAlBBq1PWQOmgHTegDaAhHQKsU5ZNfw7V1fZQoaAZHQJJE4yckMThoB03oA2gIR0CrHDZvDP4VdX2UKGgGR0CS0FfHxSYPaAdN6ANoCEdAqyA/8MuvlnV9lChoBkdAkvRYv38GcGgHTegDaAhHQKsglY6GQCF1fZQoaAZHQJKkniS7oStoB03oA2gIR0CrIzMZ5zHTdX2UKGgGR0CRxUgzguRLaAdN6ANoCEdAqywMpTdcjnV9lChoBkdAkTmrcj7hvWgHTegDaAhHQKsu1V94NZx1fZQoaAZHQJIVy9/SYw9oB03oA2gIR0CrLwhEa2nbdX2UKGgGR0CRgmftx+8XaAdN6ANoCEdAqzCc1Muez3V9lChoBkdAkyCBZyMkyGgHTegDaAhHQKs3/pxm03R1fZQoaAZHQJTyBFrl/6RoB03oA2gIR0CrOrl1SwW4dX2UKGgGR0CT7U4//vORaAdN6ANoCEdAqzsEb1h9cHV9lChoBkdAlAatGI9C/2gHTegDaAhHQKs9aVO9FnZ1fZQoaAZHQJR8q+M6zVtoB03oA2gIR0CrR9YNAkcCdX2UKGgGR0CTTleqaPS2aAdN6ANoCEdAq0qjmCAc1nV9lChoBkdAk3EDqSowVWgHTegDaAhHQKtK1xXnyNJ1fZQoaAZHQJObA2P1ct5oB03oA2gIR0CrTI4Ds+mndX2UKGgGR0CTQAPxQSBcaAdN6ANoCEdAq1QDbDdgv3V9lChoBkdAkp6dsWO6umgHTegDaAhHQKtW4iN83Mp1fZQoaAZHQJMV7MLWqcVoB03oA2gIR0CrVxeqR2bHdX2UKGgGR0CStHSS/0ulaAdN6ANoCEdAq1i+pyZKF3V9lChoBkdAlCUQ1BMSK2gHTegDaAhHQKtj4FtbcGl1fZQoaAZHQJQAjefqX4VoB03oA2gIR0CrZn1JUYKqdX2UKGgGR0CUMMhRZU1iaAdN6ANoCEdAq2axMJx//nV9lChoBkdAk8OhwhnrZGgHTegDaAhHQKtoTlRxcVx1fZQoaAZHQJWj0FnqVyFoB03oA2gIR0Crb7xvvSc9dX2UKGgGR0CUiaMrmQr+aAdN6ANoCEdAq3J+Tot+TnV9lChoBkdAk5FENnXd02gHTegDaAhHQKtytG8VYZF1fZQoaAZHQJUir0HyEtdoB03oA2gIR0CrdGwsGxD9dX2UKGgGR0CU/ENlAeJYaAdN6ANoCEdAq345vBJqZnV9lChoBkdAljte/L1VYWgHTegDaAhHQKuCc8J2MbZ1fZQoaAZHQJWBbj4pMHtoB03oA2gIR0CrgqdGI9DAdX2UKGgGR0CVwzkona37aAdN6ANoCEdAq4Q1eD3/P3V9lChoBkdAlOlPKlpGnWgHTegDaAhHQKuLkBEroW51fZQoaAZHQJR56KdhAnloB03oA2gIR0Crjkf1HvtudX2UKGgGR0CVc99ORDCxaAdN6ANoCEdAq45/TkQwsXV9lChoBkdAlRGYLb5/LGgHTegDaAhHQKuQHDn/1g91fZQoaAZHQJU7SPJaJRBoB03oA2gIR0CrmDM+/xlQdX2UKGgGR0CUoEw3HaN/aAdN6ANoCEdAq5x0TSLIgnV9lChoBkdAlTZr7bcoIGgHTegDaAhHQKucyxHoX9B1fZQoaAZHQJW7cNb1RLtoB03oA2gIR0Crn21sDW9UdX2UKGgGR0CWycRSgoPTaAdN6ANoCEdAq6bz987ZF3V9lChoBkdAlIbTI7vG62gHTegDaAhHQKupltkWhyt1fZQoaAZHQJYH3iGWUr1oB03oA2gIR0CrqcyiVSn+dX2UKGgGR0CUD1fEXLvDaAdN6ANoCEdAq6tmlfqoqHV9lChoBkdAlOBP/io86mgHTegDaAhHQKuy7ZL7Ged1fZQoaAZHQJZJnP3SKFZoB03oA2gIR0Crtl+sHSncdX2UKGgGR0CWAb6DXe3yaAdN6ANoCEdAq7a1nM+u/3V9lChoBkdAlgPkt29tdmgHTegDaAhHQKu5QXAM2FZ1fZQoaAZHQJZZxikO7QNoB03oA2gIR0Crwz2HDaXbdX2UKGgGR0CV1zgvUSZjaAdN6ANoCEdAq8YAiu+yq3V9lChoBkdAlkOmDL8rJGgHTegDaAhHQKvGNiDujRF1fZQoaAZHQJYlT3bmEGtoB03oA2gIR0Crx9C79Q40dX2UKGgGR0CSrmza9K28aAdN6ANoCEdAq88hlcyFf3V9lChoBkdAk8FXSKFZgWgHTegDaAhHQKvRzrsSkCV1fZQoaAZHQJPOoGVzIWBoB03oA2gIR0Cr0gTND+irdX2UKGgGR0CVJkW3z+WGaAdN6ANoCEdAq9OyBNEgGXV9lChoBkdAkm85zgdfcGgHTegDaAhHQKvevgP3BYV1fZQoaAZHQJT/pNXYDkloB03oA2gIR0Cr4X1ejVQRdX2UKGgGR0CTe4Fh5PdmaAdN6ANoCEdAq+GxsQ/X5HV9lChoBkdAkrpxnBciW2gHTegDaAhHQKvjREpiI+J1fZQoaAZHQJSfdkI5YHRoB03oA2gIR0Cr6nK20AtGdX2UKGgGR0CUkGhh6SkkaAdN6ANoCEdAq+1e9i+cpnV9lChoBkdAk5tXrUsnRmgHTegDaAhHQKvtmUSIxg11fZQoaAZHQJIj2+ZgG8poB03oA2gIR0Cr71YcWCVbdX2UKGgGR0CTjhz6ab4KaAdN6ANoCEdAq/muDJ2dNHV9lChoBkdAk10Mo6S1V2gHTegDaAhHQKv9bLuhK151fZQoaAZHQJGktuO0b99oB03oA2gIR0Cr/Z83Mpw0dX2UKGgGR0CUE4XTmW+oaAdN6ANoCEdAq/9JIlMRH3V9lChoBkdAkuMKS1Vo6GgHTegDaAhHQKwGmpT/ACZ1fZQoaAZHQJTYq4lQdjpoB03oA2gIR0CsCTpZntfHdX2UKGgGR0CSxvmois4laAdN6ANoCEdArAlvJkoWpXV9lChoBkdAlFubVWjoIWgHTegDaAhHQKwLF+YtxuN1fZQoaAZHQJICwEdNnGtoB03oA2gIR0CsE7jQiRnwdX2UKGgGR0CUSOl9BrvcaAdN6ANoCEdArBguyiVSoHV9lChoBkdAk90qI7/4qWgHTegDaAhHQKwYiEEkjX51fZQoaAZHQJGmDO3UhFFoB03oA2gIR0CsGynO8kD7dX2UKGgGR0CSyP8tPHktaAdN6ANoCEdArCK1ehPCVXV9lChoBkdAkNS+GTLW7WgHTegDaAhHQKwlZD4xk/d1fZQoaAZHQJMOmXhOxjdoB03oA2gIR0CsJZgQxvehdX2UKGgGR0CSH0O0b961aAdN6ANoCEdArCcvcQAdXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (909 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1199.502491224825, "std_reward": 42.834517186171745, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T14:47:34.966660"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:527878d669f2274e4a5a93203de6c6757db75e461c1056769721031fb87e2912
3
+ size 2136