|
import argparse |
|
import os |
|
import sys |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
|
|
|
|
def transcribe_audio(file_path): |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model_id = "nyrahealth/CrisperWhisper" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
chunk_length_s=30, |
|
batch_size=16, |
|
return_timestamps="word", |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
result = pipe(file_path) |
|
return result |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Transcribe an audio file.") |
|
parser.add_argument("--f", type=str, required=True, help="Path to the audio file") |
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.f): |
|
print(f"Error: The file '{args.f}' does not exist.") |
|
sys.exit(1) |
|
|
|
try: |
|
transcription = transcribe_audio(args.f) |
|
print("Transcription:") |
|
print(transcription["text"]) |
|
except Exception as e: |
|
print(f"An error occurred while transcribing the audio: {str(e)}") |
|
sys.exit(1) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|