gilramos commited on
Commit
fa1a732
·
verified ·
1 Parent(s): 1ec1f57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -6
README.md CHANGED
@@ -31,22 +31,32 @@ HateBERTimbau is a transformer-based encoder model for identifying hate speech i
31
  - **Language:** Portuguese
32
  - **Finetuned from model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased)
33
 
 
 
34
  ## Uses
35
 
36
  [More Information Needed]
37
 
38
- ## Training Data
 
 
 
 
39
 
40
  229,103 tweets associated with offensive content were used to retrain the base model.
41
 
42
- ## Training Hyperparameters
43
 
44
  - Batch Size: 4 samples
45
  - Epochs: 100
46
  - Learning Rate: 5e-5 with Adam optimizer
47
  - Maximum Sequence Length: 512 sentence pieces
48
 
49
- ## Testing Data
 
 
 
 
50
 
51
  We used two different datasets for testing, one for YouTube comments [here](https://huggingface.co/datasets/knowhate/youtube-test) and another for Tweets [here](https://huggingface.co/datasets/knowhate/twitter-test).
52
 
@@ -58,13 +68,15 @@ Twitter Test Set:
58
  - Total nº of tweets: 805
59
  - % Hate Speech: 20.62%
60
 
61
- ## Results
62
 
63
  | Dataset | Precision | Recall | F1-score |
64
- |:-----------------|:----------- |:-----------|:--------------|
65
  | **YouTube** | 0.928 | 0.108 | **0.193** |
66
  | **Twitter** | 0.686 | 0.211 | **0.323** |
67
 
 
 
68
  ## BibTeX Citation
69
 
70
  ``` latex
@@ -82,7 +94,7 @@ copyright = {embargoed-access},
82
  }
83
  ```
84
 
85
-
86
 
87
  ## Acknowledgements
88
 
 
31
  - **Language:** Portuguese
32
  - **Finetuned from model:** [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased)
33
 
34
+ <br>
35
+
36
  ## Uses
37
 
38
  [More Information Needed]
39
 
40
+ <br>
41
+
42
+ ## Training
43
+
44
+ ### Data
45
 
46
  229,103 tweets associated with offensive content were used to retrain the base model.
47
 
48
+ ### Training Hyperparameters
49
 
50
  - Batch Size: 4 samples
51
  - Epochs: 100
52
  - Learning Rate: 5e-5 with Adam optimizer
53
  - Maximum Sequence Length: 512 sentence pieces
54
 
55
+ <br>
56
+
57
+ ## Testing
58
+
59
+ ### Data
60
 
61
  We used two different datasets for testing, one for YouTube comments [here](https://huggingface.co/datasets/knowhate/youtube-test) and another for Tweets [here](https://huggingface.co/datasets/knowhate/twitter-test).
62
 
 
68
  - Total nº of tweets: 805
69
  - % Hate Speech: 20.62%
70
 
71
+ ### Results
72
 
73
  | Dataset | Precision | Recall | F1-score |
74
+ |:----------------|:-----------|:----------|:-------------|
75
  | **YouTube** | 0.928 | 0.108 | **0.193** |
76
  | **Twitter** | 0.686 | 0.211 | **0.323** |
77
 
78
+ <br>
79
+
80
  ## BibTeX Citation
81
 
82
  ``` latex
 
94
  }
95
  ```
96
 
97
+ <br>
98
 
99
  ## Acknowledgements
100