Update README.md
Browse files
README.md
CHANGED
@@ -15,9 +15,9 @@ widget:
|
|
15 |
- text: CCO
|
16 |
example_title: ethanol
|
17 |
---
|
18 |
-
#
|
19 |
|
20 |
-
SMILES2IUPAC-small was designed to accurately translate SMILES chemical names to IUPAC standards.
|
21 |
|
22 |
## Model Details
|
23 |
|
@@ -34,8 +34,8 @@ SMILES2IUPAC-small is based on the MT5 model with optimizations in implementing
|
|
34 |
<!-- Provide the basic links for the model. -->
|
35 |
|
36 |
- **Repository:** coming soon
|
37 |
-
- **Paper
|
38 |
-
- **Demo [
|
39 |
|
40 |
## Quickstart
|
41 |
Firstly, install the library:
|
@@ -56,7 +56,8 @@ your SMILES sequence.
|
|
56 |
#### To perform simple translation, follow the example:
|
57 |
```python
|
58 |
from chemicalconverters import NamesConverter
|
59 |
-
|
|
|
60 |
print(converter.smiles_to_iupac('CCO'))
|
61 |
print(converter.smiles_to_iupac(['<SYST>CCO', '<TRAD>CCO', '<BASE>CCO']))
|
62 |
```
|
@@ -67,7 +68,8 @@ print(converter.smiles_to_iupac(['<SYST>CCO', '<TRAD>CCO', '<BASE>CCO']))
|
|
67 |
#### Processing in batches:
|
68 |
```python
|
69 |
from chemicalconverters import NamesConverter
|
70 |
-
|
|
|
71 |
print(converter.smiles_to_iupac(["<BASE>C=CC=C" for _ in range(10)], num_beams=1,
|
72 |
process_in_batch=True, batch_size=1000))
|
73 |
```
|
@@ -79,7 +81,8 @@ It's possible to validate the translations by reverse translation into IUPAC
|
|
79 |
and calculating Tanimoto similarity of two molecules fingerprints.
|
80 |
````python
|
81 |
from chemicalconverters import NamesConverter
|
82 |
-
|
|
|
83 |
print(converter.smiles_to_iupac('CCO', validate=True))
|
84 |
````
|
85 |
````text
|
@@ -90,7 +93,8 @@ The larger is Tanimoto similarity, the larger is probability, that the predictio
|
|
90 |
You can also process validation manually:
|
91 |
```python
|
92 |
from chemicalconverters import NamesConverter
|
93 |
-
|
|
|
94 |
print(NamesConverter.validate_iupac(input_sequence='CCO', predicted_sequence='CCO', validation_model=validation_model))
|
95 |
```
|
96 |
```text
|
@@ -117,13 +121,13 @@ The model was trained on 100M examples of SMILES-IUPAC pairs with lr=0.0003, bat
|
|
117 |
| STOUT V2.0 (according to our tests) | | 0.89 | 128 |
|
118 |
*According to the original paper https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00512-4
|
119 |
|
120 |
-
## Citation
|
121 |
Coming soon.
|
122 |
|
123 |
-
## Model Card Authors
|
124 |
|
125 |
-
|
126 |
|
127 |
## Model Card Contact
|
128 |
|
129 |
-
|
|
|
15 |
- text: CCO
|
16 |
example_title: ethanol
|
17 |
---
|
18 |
+
# SMILES2IUPAC-canonical-small
|
19 |
|
20 |
+
SMILES2IUPAC-canonical-small was designed to accurately translate SMILES chemical names to IUPAC standards.
|
21 |
|
22 |
## Model Details
|
23 |
|
|
|
34 |
<!-- Provide the basic links for the model. -->
|
35 |
|
36 |
- **Repository:** coming soon
|
37 |
+
- **Paper:** coming soon
|
38 |
+
- **Demo:** [ChemicalConverters](https://huggingface.co/spaces/knowledgator/ChemicalConverters)
|
39 |
|
40 |
## Quickstart
|
41 |
Firstly, install the library:
|
|
|
56 |
#### To perform simple translation, follow the example:
|
57 |
```python
|
58 |
from chemicalconverters import NamesConverter
|
59 |
+
|
60 |
+
converter = NamesConverter(model_name="knowledgator/SMILES2IUPAC-canonical-small")
|
61 |
print(converter.smiles_to_iupac('CCO'))
|
62 |
print(converter.smiles_to_iupac(['<SYST>CCO', '<TRAD>CCO', '<BASE>CCO']))
|
63 |
```
|
|
|
68 |
#### Processing in batches:
|
69 |
```python
|
70 |
from chemicalconverters import NamesConverter
|
71 |
+
|
72 |
+
converter = NamesConverter(model_name="knowledgator/SMILES2IUPAC-canonical-small")
|
73 |
print(converter.smiles_to_iupac(["<BASE>C=CC=C" for _ in range(10)], num_beams=1,
|
74 |
process_in_batch=True, batch_size=1000))
|
75 |
```
|
|
|
81 |
and calculating Tanimoto similarity of two molecules fingerprints.
|
82 |
````python
|
83 |
from chemicalconverters import NamesConverter
|
84 |
+
|
85 |
+
converter = NamesConverter(model_name="knowledgator/SMILES2IUPAC-canonical-small")
|
86 |
print(converter.smiles_to_iupac('CCO', validate=True))
|
87 |
````
|
88 |
````text
|
|
|
93 |
You can also process validation manually:
|
94 |
```python
|
95 |
from chemicalconverters import NamesConverter
|
96 |
+
|
97 |
+
validation_model = NamesConverter(model_name="knowledgator/IUPAC2SMILES-canonical-base")
|
98 |
print(NamesConverter.validate_iupac(input_sequence='CCO', predicted_sequence='CCO', validation_model=validation_model))
|
99 |
```
|
100 |
```text
|
|
|
121 |
| STOUT V2.0 (according to our tests) | | 0.89 | 128 |
|
122 |
*According to the original paper https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00512-4
|
123 |
|
124 |
+
## Citation
|
125 |
Coming soon.
|
126 |
|
127 |
+
## Model Card Authors
|
128 |
|
129 |
+
@BioMike
|
130 |
|
131 |
## Model Card Contact
|
132 |
|
133 |
+
info@knowledgator.com
|