BioMike commited on
Commit
5e08371
1 Parent(s): f07aa5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -12
README.md CHANGED
@@ -15,9 +15,9 @@ widget:
15
  - text: CCO
16
  example_title: ethanol
17
  ---
18
- # Model Card for Model ID
19
 
20
- SMILES2IUPAC-small was designed to accurately translate SMILES chemical names to IUPAC standards.
21
 
22
  ## Model Details
23
 
@@ -34,8 +34,8 @@ SMILES2IUPAC-small is based on the MT5 model with optimizations in implementing
34
  <!-- Provide the basic links for the model. -->
35
 
36
  - **Repository:** coming soon
37
- - **Paper [optional]:** coming soon
38
- - **Demo [optional]:** huggingface.co/spaces/knowledgator/ChemicalConverters
39
 
40
  ## Quickstart
41
  Firstly, install the library:
@@ -56,7 +56,8 @@ your SMILES sequence.
56
  #### To perform simple translation, follow the example:
57
  ```python
58
  from chemicalconverters import NamesConverter
59
- converter = NamesConverter(model_name="smiles2iupac-canonical-small")
 
60
  print(converter.smiles_to_iupac('CCO'))
61
  print(converter.smiles_to_iupac(['<SYST>CCO', '<TRAD>CCO', '<BASE>CCO']))
62
  ```
@@ -67,7 +68,8 @@ print(converter.smiles_to_iupac(['<SYST>CCO', '<TRAD>CCO', '<BASE>CCO']))
67
  #### Processing in batches:
68
  ```python
69
  from chemicalconverters import NamesConverter
70
- converter = NamesConverter(model_name="smiles2iupac-canonical-small")
 
71
  print(converter.smiles_to_iupac(["<BASE>C=CC=C" for _ in range(10)], num_beams=1,
72
  process_in_batch=True, batch_size=1000))
73
  ```
@@ -79,7 +81,8 @@ It's possible to validate the translations by reverse translation into IUPAC
79
  and calculating Tanimoto similarity of two molecules fingerprints.
80
  ````python
81
  from chemicalconverters import NamesConverter
82
- converter = NamesConverter(model_name="smiles2iupac-canonical-small")
 
83
  print(converter.smiles_to_iupac('CCO', validate=True))
84
  ````
85
  ````text
@@ -90,7 +93,8 @@ The larger is Tanimoto similarity, the larger is probability, that the predictio
90
  You can also process validation manually:
91
  ```python
92
  from chemicalconverters import NamesConverter
93
- validation_model = NamesConverter(model_name="iupac2smiles-canonical-base")
 
94
  print(NamesConverter.validate_iupac(input_sequence='CCO', predicted_sequence='CCO', validation_model=validation_model))
95
  ```
96
  ```text
@@ -117,13 +121,13 @@ The model was trained on 100M examples of SMILES-IUPAC pairs with lr=0.0003, bat
117
  | STOUT V2.0 (according to our tests) | | 0.89 | 128 |
118
  *According to the original paper https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00512-4
119
 
120
- ## Citation [optional]
121
  Coming soon.
122
 
123
- ## Model Card Authors [optional]
124
 
125
- [More Information Needed]
126
 
127
  ## Model Card Contact
128
 
129
- [More Information Needed]
 
15
  - text: CCO
16
  example_title: ethanol
17
  ---
18
+ # SMILES2IUPAC-canonical-small
19
 
20
+ SMILES2IUPAC-canonical-small was designed to accurately translate SMILES chemical names to IUPAC standards.
21
 
22
  ## Model Details
23
 
 
34
  <!-- Provide the basic links for the model. -->
35
 
36
  - **Repository:** coming soon
37
+ - **Paper:** coming soon
38
+ - **Demo:** [ChemicalConverters](https://huggingface.co/spaces/knowledgator/ChemicalConverters)
39
 
40
  ## Quickstart
41
  Firstly, install the library:
 
56
  #### To perform simple translation, follow the example:
57
  ```python
58
  from chemicalconverters import NamesConverter
59
+
60
+ converter = NamesConverter(model_name="knowledgator/SMILES2IUPAC-canonical-small")
61
  print(converter.smiles_to_iupac('CCO'))
62
  print(converter.smiles_to_iupac(['<SYST>CCO', '<TRAD>CCO', '<BASE>CCO']))
63
  ```
 
68
  #### Processing in batches:
69
  ```python
70
  from chemicalconverters import NamesConverter
71
+
72
+ converter = NamesConverter(model_name="knowledgator/SMILES2IUPAC-canonical-small")
73
  print(converter.smiles_to_iupac(["<BASE>C=CC=C" for _ in range(10)], num_beams=1,
74
  process_in_batch=True, batch_size=1000))
75
  ```
 
81
  and calculating Tanimoto similarity of two molecules fingerprints.
82
  ````python
83
  from chemicalconverters import NamesConverter
84
+
85
+ converter = NamesConverter(model_name="knowledgator/SMILES2IUPAC-canonical-small")
86
  print(converter.smiles_to_iupac('CCO', validate=True))
87
  ````
88
  ````text
 
93
  You can also process validation manually:
94
  ```python
95
  from chemicalconverters import NamesConverter
96
+
97
+ validation_model = NamesConverter(model_name="knowledgator/IUPAC2SMILES-canonical-base")
98
  print(NamesConverter.validate_iupac(input_sequence='CCO', predicted_sequence='CCO', validation_model=validation_model))
99
  ```
100
  ```text
 
121
  | STOUT V2.0 (according to our tests) | | 0.89 | 128 |
122
  *According to the original paper https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00512-4
123
 
124
+ ## Citation
125
  Coming soon.
126
 
127
+ ## Model Card Authors
128
 
129
+ @BioMike
130
 
131
  ## Model Card Contact
132
 
133
+ info@knowledgator.com