Update README.md
Browse files
README.md
CHANGED
@@ -91,38 +91,39 @@ outputs = model.batch_predict_with_embeds(texts, entity_embeddings, labels)
|
|
91 |
|
92 |
### Benchmarks
|
93 |
Below you can see the table with benchmarking results on various named entity recognition datasets:
|
|
|
94 |
|
95 |
| Dataset | Score |
|
96 |
|-------------------------|--------|
|
97 |
-
| ACE 2004 |
|
98 |
-
| ACE 2005 |
|
99 |
-
| AnatEM |
|
100 |
-
| Broad Tweet Corpus |
|
101 |
-
| CoNLL 2003 |
|
102 |
-
| FabNER
|
103 |
-
| FindVehicle |
|
104 |
-
| GENIA_NER |
|
105 |
-
| HarveyNER |
|
106 |
-
| MultiNERD |
|
107 |
-
| Ontonotes |
|
108 |
-
| PolyglotNER |
|
109 |
-
| TweetNER7 |
|
110 |
-
| WikiANN en |
|
111 |
-
| WikiNeural |
|
112 |
-
| bc2gm |
|
113 |
-
| bc4chemd |
|
114 |
-
| bc5cdr |
|
115 |
-
| ncbi |
|
116 |
| **Average** | **48.0%** |
|
117 |
| | |
|
118 |
-
| CrossNER_AI |
|
119 |
-
| CrossNER_literature |
|
120 |
-
| CrossNER_music |
|
121 |
-
| CrossNER_politics |
|
122 |
-
| CrossNER_science | 66.
|
123 |
-
| mit-movie |
|
124 |
-
| mit-restaurant |
|
125 |
-
| **Average (zero-shot benchmark)** | **58.
|
126 |
|
127 |
### Join Our Discord
|
128 |
|
|
|
91 |
|
92 |
### Benchmarks
|
93 |
Below you can see the table with benchmarking results on various named entity recognition datasets:
|
94 |
+
Here’s the updated table with your provided data:
|
95 |
|
96 |
| Dataset | Score |
|
97 |
|-------------------------|--------|
|
98 |
+
| ACE 2004 | 32.9% |
|
99 |
+
| ACE 2005 | 30.1% |
|
100 |
+
| AnatEM | 39.6% |
|
101 |
+
| Broad Tweet Corpus | 65.4% |
|
102 |
+
| CoNLL 2003 | 59.8% |
|
103 |
+
| FabNER | 26.2% |
|
104 |
+
| FindVehicle | 30.2% |
|
105 |
+
| GENIA_NER | 50.0% |
|
106 |
+
| HarveyNER | 23.9% |
|
107 |
+
| MultiNERD | 61.7% |
|
108 |
+
| Ontonotes | 29.6% |
|
109 |
+
| PolyglotNER | 40.9% |
|
110 |
+
| TweetNER7 | 36.6% |
|
111 |
+
| WikiANN en | 54.3% |
|
112 |
+
| WikiNeural | 74.0% |
|
113 |
+
| bc2gm | 54.9% |
|
114 |
+
| bc4chemd | 62.3% |
|
115 |
+
| bc5cdr | 73.8% |
|
116 |
+
| ncbi | 65.4% |
|
117 |
| **Average** | **48.0%** |
|
118 |
| | |
|
119 |
+
| CrossNER_AI | 57.4% |
|
120 |
+
| CrossNER_literature | 65.9% |
|
121 |
+
| CrossNER_music | 65.8% |
|
122 |
+
| CrossNER_politics | 67.5% |
|
123 |
+
| CrossNER_science | 66.3% |
|
124 |
+
| mit-movie | 46.7% |
|
125 |
+
| mit-restaurant | 32.6% |
|
126 |
+
| **Average (zero-shot benchmark)** | **58.5%** |
|
127 |
|
128 |
### Join Our Discord
|
129 |
|