Ihor commited on
Commit
2923dd2
1 Parent(s): 36fabc4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -15
README.md CHANGED
@@ -210,9 +210,9 @@ for match in matches:
210
  *Dataset: WiRe57_343-manual-oie*
211
  | Model | Precision | Recall | F1 Score |
212
  |:-----------------------|------------:|---------:|-----------:|
213
- | knowledgator/gliner-llama-multitask-1B-v1.0 | 0.914894 | 0.200466 | 0.328872 |
214
- | knowledgator/gliner-multitask-v0.5 | 0.848485 | 0.140351 | 0.24086 |
215
- | knowledgator/gliner-multitask-v1.0 | 0.9 | 0.155172 | 0.264706 |
216
 
217
  ---
218
 
@@ -235,7 +235,6 @@ for answer in answers:
235
 
236
  ### Performance:
237
  *Dataset: SQuAD 2.0*
238
-
239
  | Model | Precision | Recall | F1 Score |
240
  |:-----------------------|------------:|---------:|-----------:|
241
  | knowledgator/gliner-llama-multitask-1B-v1.0 | 0.578296 | 0.795821 | 0.669841 |
@@ -264,22 +263,12 @@ labels = ["summary"]
264
 
265
  input_ = prompt+text
266
 
267
- threshold = 0.5
268
  summaries = model.predict_entities(input_, labels, threshold=threshold)
269
 
270
  for summary in summaries:
271
  print(summary["text"], "=>", summary["score"])
272
  ```
273
-
274
- ### Performance:
275
- *Dataset: SQuAD 2.0*
276
-
277
- | Model | BLEU | ROUGE1 | ROUGE2 | ROUGEL | Cosine Similarity |
278
- |:-----------------------|------------:|----------:|-----------:|----------:|--------------------:|
279
- | knowledgator/gliner-llama-multitask-1B-v1.0 | 7.9728e-157 | 0.0955005 | 0.00236265 | 0.0738533 | 0.0515591 |
280
- | knowledgator/gliner-multitask-v0.5 | 1.70326e-06 | 0.0627964 | 0.00203505 | 0.0482932 | 0.0532316 |
281
- | knowledgator/gliner-multitask-v1.0 | 5.78799e-06 | 0.0878883 | 0.0030312 | 0.0657152 | 0.060342 |
282
-
283
  ---
284
 
285
  **How to use for text classification:**
 
210
  *Dataset: WiRe57_343-manual-oie*
211
  | Model | Precision | Recall | F1 Score |
212
  |:-----------------------|------------:|---------:|-----------:|
213
+ | knowledgator/gliner-llama-multitask-1B-v1.0 | 0.9047 | 0.2794 | 0.4269 |
214
+ | knowledgator/gliner-multitask-v0.5 | 0.9278 | 0.2779 | 0.4287 |
215
+ | knowledgator/gliner-multitask-v1.0 | 0.8775 | 0.2733 | 0.4168 |
216
 
217
  ---
218
 
 
235
 
236
  ### Performance:
237
  *Dataset: SQuAD 2.0*
 
238
  | Model | Precision | Recall | F1 Score |
239
  |:-----------------------|------------:|---------:|-----------:|
240
  | knowledgator/gliner-llama-multitask-1B-v1.0 | 0.578296 | 0.795821 | 0.669841 |
 
263
 
264
  input_ = prompt+text
265
 
266
+ threshold = 0.1
267
  summaries = model.predict_entities(input_, labels, threshold=threshold)
268
 
269
  for summary in summaries:
270
  print(summary["text"], "=>", summary["score"])
271
  ```
 
 
 
 
 
 
 
 
 
 
272
  ---
273
 
274
  **How to use for text classification:**