kongju7 commited on
Commit
74bdec2
1 Parent(s): 603e01e

[NLP with Transformers] Training completed

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: distilbert-base-uncased-finetuned-emotion
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilbert-base-uncased-finetuned-emotion
18
+
19
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1561
22
+ - Accuracy: 0.934
23
+ - F1: 0.9345
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 64
44
+ - eval_batch_size: 64
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 2
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
54
+ | 0.2034 | 1.0 | 250 | 0.1754 | 0.9315 | 0.9323 |
55
+ | 0.1344 | 2.0 | 500 | 0.1561 | 0.934 | 0.9345 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.33.2
61
+ - Pytorch 2.0.1+cu118
62
+ - Datasets 1.16.1
63
+ - Tokenizers 0.13.3