konsman commited on
Commit
f4686e1
1 Parent(s): ed86709

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: A gentle nudge to complete the healthcare webinar questionnaire sent last
12
+ week.
13
+ - text: Sudden severe chest pain, suspecting a cardiac emergency.
14
+ - text: Annual physical examination due in Tuesday, March 05. Please book an appointment.
15
+ - text: Please confirm your attendance at the lifestyle next month.
16
+ - text: Could you verify your emergency contact details in our records?
17
+ pipeline_tag: text-classification
18
+ inference: true
19
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
20
+ model-index:
21
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.85
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 3 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 2 | <ul><li>'Rapid onset of confusion and weakness, urgent evaluation needed.'</li><li>'Unconscious patient found, immediate medical response required.'</li><li>'Urgent: Suspected heart attack, immediate medical attention required.'</li></ul> |
67
+ | 1 | <ul><li>'Reminder: Your dental check-up is scheduled for Monday, February 05.'</li><li>'Reminder: Your dental check-up is scheduled for Saturday, February 24.'</li><li>'Nutritionist appointment reminder for Sunday, January 21.'</li></ul> |
68
+ | 0 | <ul><li>'Could you verify your lifestyle contact details in our records?'</li><li>'Kindly update your emergency contact list at your earliest convenience.'</li><li>'We request you to update your wellness information for our records.'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | Accuracy |
74
+ |:--------|:---------|
75
+ | **all** | 0.85 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("konsman/setfit-messages-generated-test")
94
+ # Run inference
95
+ preds = model("Sudden severe chest pain, suspecting a cardiac emergency.")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:-------|:----|
127
+ | Word count | 7 | 10.125 | 12 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 0 | 16 |
132
+ | 1 | 16 |
133
+ | 2 | 16 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (8, 8)
137
+ - num_epochs: (2, 2)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - num_iterations: 40
141
+ - body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
142
+ - head_learning_rate: 2.2041595048800003e-05
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:------:|:----:|:-------------:|:---------------:|
156
+ | 0.0021 | 1 | 0.2841 | - |
157
+ | 0.1042 | 50 | 0.0603 | - |
158
+ | 0.2083 | 100 | 0.0017 | - |
159
+ | 0.3125 | 150 | 0.0003 | - |
160
+ | 0.4167 | 200 | 0.0004 | - |
161
+ | 0.5208 | 250 | 0.0003 | - |
162
+ | 0.625 | 300 | 0.0003 | - |
163
+ | 0.7292 | 350 | 0.0002 | - |
164
+ | 0.8333 | 400 | 0.0003 | - |
165
+ | 0.9375 | 450 | 0.0001 | - |
166
+ | 1.0417 | 500 | 0.0002 | - |
167
+ | 1.1458 | 550 | 0.0003 | - |
168
+ | 1.25 | 600 | 0.0002 | - |
169
+ | 1.3542 | 650 | 0.0002 | - |
170
+ | 1.4583 | 700 | 0.0001 | - |
171
+ | 1.5625 | 750 | 0.0002 | - |
172
+ | 1.6667 | 800 | 0.0001 | - |
173
+ | 1.7708 | 850 | 0.0001 | - |
174
+ | 1.875 | 900 | 0.0001 | - |
175
+ | 1.9792 | 950 | 0.0002 | - |
176
+
177
+ ### Framework Versions
178
+ - Python: 3.10.12
179
+ - SetFit: 1.0.3
180
+ - Sentence Transformers: 2.2.2
181
+ - Transformers: 4.35.2
182
+ - PyTorch: 2.1.0+cu121
183
+ - Datasets: 2.16.1
184
+ - Tokenizers: 0.15.0
185
+
186
+ ## Citation
187
+
188
+ ### BibTeX
189
+ ```bibtex
190
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
191
+ doi = {10.48550/ARXIV.2209.11055},
192
+ url = {https://arxiv.org/abs/2209.11055},
193
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
194
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
195
+ title = {Efficient Few-Shot Learning Without Prompts},
196
+ publisher = {arXiv},
197
+ year = {2022},
198
+ copyright = {Creative Commons Attribution 4.0 International}
199
+ }
200
+ ```
201
+
202
+ <!--
203
+ ## Glossary
204
+
205
+ *Clearly define terms in order to be accessible across audiences.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Authors
210
+
211
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
212
+ -->
213
+
214
+ <!--
215
+ ## Model Card Contact
216
+
217
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
218
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b89b6c1b56f47846cd0089e10d5db35cbd9db9cc3d26fab40ab85eff7f60daae
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bc2f0d51a03b01d0de028d99fd3f412de80f8489c35bcd40435f8d48ae29e6c
3
+ size 19311
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff