File size: 2,417 Bytes
abf6bf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# vocal-remover
[![Release](https://img.shields.io/github/release/tsurumeso/vocal-remover.svg)](https://github.com/tsurumeso/vocal-remover/releases/latest)
[![Release](https://img.shields.io/github/downloads/tsurumeso/vocal-remover/total.svg)](https://github.com/tsurumeso/vocal-remover/releases)
This is a deep-learning-based tool to extract instrumental track from your songs.
## Installation
### Getting vocal-remover
Download the latest version from [here](https://github.com/tsurumeso/vocal-remover/releases).
### Install PyTorch
**See**: [GET STARTED](https://pytorch.org/get-started/locally/)
### Install the other packages
```
cd vocal-remover
pip install -r requirements.txt
```
## Usage
The following command separates the input into instrumental and vocal tracks. They are saved as `*_Instruments.wav` and `*_Vocals.wav`.
### Run on CPU
```
python inference.py --input path/to/an/audio/file
```
### Run on GPU
```
python inference.py --input path/to/an/audio/file --gpu 0
```
### Advanced options
`--tta` option performs Test-Time-Augmentation to improve the separation quality.
```
python inference.py --input path/to/an/audio/file --tta --gpu 0
```
`--postprocess` option masks instrumental part based on the vocals volume to improve the separation quality.
**Experimental Warning**: If you get any problems with this option, please disable it.
```
python inference.py --input path/to/an/audio/file --postprocess --gpu 0
```
## Train your own model
### Place your dataset
```
path/to/dataset/
+- instruments/
| +- 01_foo_inst.wav
| +- 02_bar_inst.mp3
| +- ...
+- mixtures/
+- 01_foo_mix.wav
+- 02_bar_mix.mp3
+- ...
```
### Train a model
```
python train.py --dataset path/to/dataset --reduction_rate 0.5 --mixup_rate 0.5 --gpu 0
```
## References
- [1] Jansson et al., "Singing Voice Separation with Deep U-Net Convolutional Networks", https://ejhumphrey.com/assets/pdf/jansson2017singing.pdf
- [2] Takahashi et al., "Multi-scale Multi-band DenseNets for Audio Source Separation", https://arxiv.org/pdf/1706.09588.pdf
- [3] Takahashi et al., "MMDENSELSTM: AN EFFICIENT COMBINATION OF CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS FOR AUDIO SOURCE SEPARATION", https://arxiv.org/pdf/1805.02410.pdf
- [4] Liutkus et al., "The 2016 Signal Separation Evaluation Campaign", Latent Variable Analysis and Signal Separation - 12th International Conference
|