File size: 1,190 Bytes
9633b53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_core_med7_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8778156997
- name: NER Recall
type: recall
value: 0.8840918466
- name: NER F Score
type: f_score
value: 0.8809425949
---
| Feature | Description |
| --- | --- |
| **Name** | `en_core_med7_lg` |
| **Version** | `3.1.3.1` |
| **spaCy** | `>=3.1.4,<3.2.0` |
| **Default Pipeline** | `tok2vec`, `ner` |
| **Components** | `tok2vec`, `ner` |
| **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) |
| **Sources** | n/a |
| **License** | `MIT` |
| **Author** | [Andrey Kormilitzin](kormilitzin.com) |
### Label Scheme
<details>
<summary>View label scheme (7 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 88.09 |
| `ENTS_P` | 87.78 |
| `ENTS_R` | 88.41 |
| `TOK2VEC_LOSS` | 115648.09 |
| `NER_LOSS` | 279069.77 | |