--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_med7_lg results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8778156997 - name: NER Recall type: recall value: 0.8840918466 - name: NER F Score type: f_score value: 0.8809425949 --- | Feature | Description | | --- | --- | | **Name** | `en_core_med7_lg` | | **Version** | `3.1.3.1` | | **spaCy** | `>=3.1.4,<3.2.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | `MIT` | | **Author** | [Andrey Kormilitzin](kormilitzin.com) | ### Label Scheme
View label scheme (7 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `DOSAGE`, `DRUG`, `DURATION`, `FORM`, `FREQUENCY`, `ROUTE`, `STRENGTH` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 88.09 | | `ENTS_P` | 87.78 | | `ENTS_R` | 88.41 | | `TOK2VEC_LOSS` | 115648.09 | | `NER_LOSS` | 279069.77 |