korruz commited on
Commit
600119f
1 Parent(s): 98d6915

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/mpnet-base
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ metrics:
10
+ - cosine_accuracy
11
+ - dot_accuracy
12
+ - manhattan_accuracy
13
+ - euclidean_accuracy
14
+ - max_accuracy
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:100000
22
+ - loss:MultipleNegativesRankingLoss
23
+ widget:
24
+ - source_sentence: People on bicycles waiting at an intersection.
25
+ sentences:
26
+ - More than one person on a bicycle is obeying traffic laws.
27
+ - The people are on skateboards.
28
+ - People waiting at a light on bikes.
29
+ - source_sentence: A dog is in the water.
30
+ sentences:
31
+ - A white dog with brown spots standing in water.
32
+ - A woman in a white outfit holds her purse while on a crowded bus.
33
+ - A wakeboarder is traveling across the water behind a ramp.
34
+ - source_sentence: The people are sleeping.
35
+ sentences:
36
+ - A man and young boy asleep in a chair.
37
+ - A father and his son cuddle while sleeping.
38
+ - Several people are sitting on the back of a truck outside.
39
+ - source_sentence: A dog is swimming.
40
+ sentences:
41
+ - A brown god relaxes on a brick sidewalk.
42
+ - The furry brown dog is swimming in the ocean.
43
+ - a black dog swimming in the water with a tennis ball in his mouth
44
+ - source_sentence: A dog is swimming.
45
+ sentences:
46
+ - A woman in all black throws a football indoors while man looks at his cellphone
47
+ in the background.
48
+ - A white dog with a stick in his mouth standing next to a black dog.
49
+ - A dog with yellow fur swims, neck deep, in water.
50
+ model-index:
51
+ - name: MPNet base trained on AllNLI triplets
52
+ results:
53
+ - task:
54
+ type: triplet
55
+ name: Triplet
56
+ dataset:
57
+ name: all nli dev
58
+ type: all-nli-dev
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.9059842041312273
62
+ name: Cosine Accuracy
63
+ - type: dot_accuracy
64
+ value: 0.09386391251518833
65
+ name: Dot Accuracy
66
+ - type: manhattan_accuracy
67
+ value: 0.900820170109356
68
+ name: Manhattan Accuracy
69
+ - type: euclidean_accuracy
70
+ value: 0.9017314702308628
71
+ name: Euclidean Accuracy
72
+ - type: max_accuracy
73
+ value: 0.9059842041312273
74
+ name: Max Accuracy
75
+ - task:
76
+ type: triplet
77
+ name: Triplet
78
+ dataset:
79
+ name: all nli test
80
+ type: all-nli-test
81
+ metrics:
82
+ - type: cosine_accuracy
83
+ value: 0.9185958541382963
84
+ name: Cosine Accuracy
85
+ - type: dot_accuracy
86
+ value: 0.08019367529126949
87
+ name: Dot Accuracy
88
+ - type: manhattan_accuracy
89
+ value: 0.9142078983204721
90
+ name: Manhattan Accuracy
91
+ - type: euclidean_accuracy
92
+ value: 0.9142078983204721
93
+ name: Euclidean Accuracy
94
+ - type: max_accuracy
95
+ value: 0.9185958541382963
96
+ name: Max Accuracy
97
+ ---
98
+
99
+ # MPNet base trained on AllNLI triplets
100
+
101
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
102
+
103
+ ## Model Details
104
+
105
+ ### Model Description
106
+ - **Model Type:** Sentence Transformer
107
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
108
+ - **Maximum Sequence Length:** 512 tokens
109
+ - **Output Dimensionality:** 768 tokens
110
+ - **Similarity Function:** Cosine Similarity
111
+ - **Training Dataset:**
112
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
113
+ - **Language:** en
114
+ - **License:** apache-2.0
115
+
116
+ ### Model Sources
117
+
118
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
119
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
120
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
121
+
122
+ ### Full Model Architecture
123
+
124
+ ```
125
+ SentenceTransformer(
126
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
127
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
128
+ )
129
+ ```
130
+
131
+ ## Usage
132
+
133
+ ### Direct Usage (Sentence Transformers)
134
+
135
+ First install the Sentence Transformers library:
136
+
137
+ ```bash
138
+ pip install -U sentence-transformers
139
+ ```
140
+
141
+ Then you can load this model and run inference.
142
+ ```python
143
+ from sentence_transformers import SentenceTransformer
144
+
145
+ # Download from the 🤗 Hub
146
+ model = SentenceTransformer("korruz/mpnet-base-all-nli-triplet")
147
+ # Run inference
148
+ sentences = [
149
+ 'A dog is swimming.',
150
+ 'A dog with yellow fur swims, neck deep, in water.',
151
+ 'A white dog with a stick in his mouth standing next to a black dog.',
152
+ ]
153
+ embeddings = model.encode(sentences)
154
+ print(embeddings.shape)
155
+ # [3, 768]
156
+
157
+ # Get the similarity scores for the embeddings
158
+ similarities = model.similarity(embeddings, embeddings)
159
+ print(similarities.shape)
160
+ # [3, 3]
161
+ ```
162
+
163
+ <!--
164
+ ### Direct Usage (Transformers)
165
+
166
+ <details><summary>Click to see the direct usage in Transformers</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Downstream Usage (Sentence Transformers)
173
+
174
+ You can finetune this model on your own dataset.
175
+
176
+ <details><summary>Click to expand</summary>
177
+
178
+ </details>
179
+ -->
180
+
181
+ <!--
182
+ ### Out-of-Scope Use
183
+
184
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
185
+ -->
186
+
187
+ ## Evaluation
188
+
189
+ ### Metrics
190
+
191
+ #### Triplet
192
+ * Dataset: `all-nli-dev`
193
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
194
+
195
+ | Metric | Value |
196
+ |:-------------------|:----------|
197
+ | cosine_accuracy | 0.906 |
198
+ | dot_accuracy | 0.0939 |
199
+ | manhattan_accuracy | 0.9008 |
200
+ | euclidean_accuracy | 0.9017 |
201
+ | **max_accuracy** | **0.906** |
202
+
203
+ #### Triplet
204
+ * Dataset: `all-nli-test`
205
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
206
+
207
+ | Metric | Value |
208
+ |:-------------------|:-----------|
209
+ | cosine_accuracy | 0.9186 |
210
+ | dot_accuracy | 0.0802 |
211
+ | manhattan_accuracy | 0.9142 |
212
+ | euclidean_accuracy | 0.9142 |
213
+ | **max_accuracy** | **0.9186** |
214
+
215
+ <!--
216
+ ## Bias, Risks and Limitations
217
+
218
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
219
+ -->
220
+
221
+ <!--
222
+ ### Recommendations
223
+
224
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
225
+ -->
226
+
227
+ ## Training Details
228
+
229
+ ### Training Dataset
230
+
231
+ #### sentence-transformers/all-nli
232
+
233
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
234
+ * Size: 100,000 training samples
235
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
236
+ * Approximate statistics based on the first 1000 samples:
237
+ | | anchor | positive | negative |
238
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
239
+ | type | string | string | string |
240
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
241
+ * Samples:
242
+ | anchor | positive | negative |
243
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
244
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
245
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
246
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
247
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
248
+ ```json
249
+ {
250
+ "scale": 20.0,
251
+ "similarity_fct": "cos_sim"
252
+ }
253
+ ```
254
+
255
+ ### Training Hyperparameters
256
+ #### Non-Default Hyperparameters
257
+
258
+ - `eval_strategy`: steps
259
+ - `per_device_train_batch_size`: 16
260
+ - `per_device_eval_batch_size`: 16
261
+ - `learning_rate`: 2e-05
262
+ - `num_train_epochs`: 1
263
+ - `warmup_ratio`: 0.1
264
+ - `fp16`: True
265
+ - `batch_sampler`: no_duplicates
266
+
267
+ #### All Hyperparameters
268
+ <details><summary>Click to expand</summary>
269
+
270
+ - `overwrite_output_dir`: False
271
+ - `do_predict`: False
272
+ - `eval_strategy`: steps
273
+ - `prediction_loss_only`: True
274
+ - `per_device_train_batch_size`: 16
275
+ - `per_device_eval_batch_size`: 16
276
+ - `per_gpu_train_batch_size`: None
277
+ - `per_gpu_eval_batch_size`: None
278
+ - `gradient_accumulation_steps`: 1
279
+ - `eval_accumulation_steps`: None
280
+ - `torch_empty_cache_steps`: None
281
+ - `learning_rate`: 2e-05
282
+ - `weight_decay`: 0.0
283
+ - `adam_beta1`: 0.9
284
+ - `adam_beta2`: 0.999
285
+ - `adam_epsilon`: 1e-08
286
+ - `max_grad_norm`: 1.0
287
+ - `num_train_epochs`: 1
288
+ - `max_steps`: -1
289
+ - `lr_scheduler_type`: linear
290
+ - `lr_scheduler_kwargs`: {}
291
+ - `warmup_ratio`: 0.1
292
+ - `warmup_steps`: 0
293
+ - `log_level`: passive
294
+ - `log_level_replica`: warning
295
+ - `log_on_each_node`: True
296
+ - `logging_nan_inf_filter`: True
297
+ - `save_safetensors`: True
298
+ - `save_on_each_node`: False
299
+ - `save_only_model`: False
300
+ - `restore_callback_states_from_checkpoint`: False
301
+ - `no_cuda`: False
302
+ - `use_cpu`: False
303
+ - `use_mps_device`: False
304
+ - `seed`: 42
305
+ - `data_seed`: None
306
+ - `jit_mode_eval`: False
307
+ - `use_ipex`: False
308
+ - `bf16`: False
309
+ - `fp16`: True
310
+ - `fp16_opt_level`: O1
311
+ - `half_precision_backend`: auto
312
+ - `bf16_full_eval`: False
313
+ - `fp16_full_eval`: False
314
+ - `tf32`: None
315
+ - `local_rank`: 0
316
+ - `ddp_backend`: None
317
+ - `tpu_num_cores`: None
318
+ - `tpu_metrics_debug`: False
319
+ - `debug`: []
320
+ - `dataloader_drop_last`: False
321
+ - `dataloader_num_workers`: 0
322
+ - `dataloader_prefetch_factor`: None
323
+ - `past_index`: -1
324
+ - `disable_tqdm`: False
325
+ - `remove_unused_columns`: True
326
+ - `label_names`: None
327
+ - `load_best_model_at_end`: False
328
+ - `ignore_data_skip`: False
329
+ - `fsdp`: []
330
+ - `fsdp_min_num_params`: 0
331
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
332
+ - `fsdp_transformer_layer_cls_to_wrap`: None
333
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
334
+ - `deepspeed`: None
335
+ - `label_smoothing_factor`: 0.0
336
+ - `optim`: adamw_torch
337
+ - `optim_args`: None
338
+ - `adafactor`: False
339
+ - `group_by_length`: False
340
+ - `length_column_name`: length
341
+ - `ddp_find_unused_parameters`: None
342
+ - `ddp_bucket_cap_mb`: None
343
+ - `ddp_broadcast_buffers`: False
344
+ - `dataloader_pin_memory`: True
345
+ - `dataloader_persistent_workers`: False
346
+ - `skip_memory_metrics`: True
347
+ - `use_legacy_prediction_loop`: False
348
+ - `push_to_hub`: False
349
+ - `resume_from_checkpoint`: None
350
+ - `hub_model_id`: None
351
+ - `hub_strategy`: every_save
352
+ - `hub_private_repo`: False
353
+ - `hub_always_push`: False
354
+ - `gradient_checkpointing`: False
355
+ - `gradient_checkpointing_kwargs`: None
356
+ - `include_inputs_for_metrics`: False
357
+ - `eval_do_concat_batches`: True
358
+ - `fp16_backend`: auto
359
+ - `push_to_hub_model_id`: None
360
+ - `push_to_hub_organization`: None
361
+ - `mp_parameters`:
362
+ - `auto_find_batch_size`: False
363
+ - `full_determinism`: False
364
+ - `torchdynamo`: None
365
+ - `ray_scope`: last
366
+ - `ddp_timeout`: 1800
367
+ - `torch_compile`: False
368
+ - `torch_compile_backend`: None
369
+ - `torch_compile_mode`: None
370
+ - `dispatch_batches`: None
371
+ - `split_batches`: None
372
+ - `include_tokens_per_second`: False
373
+ - `include_num_input_tokens_seen`: False
374
+ - `neftune_noise_alpha`: None
375
+ - `optim_target_modules`: None
376
+ - `batch_eval_metrics`: False
377
+ - `eval_on_start`: False
378
+ - `eval_use_gather_object`: False
379
+ - `batch_sampler`: no_duplicates
380
+ - `multi_dataset_batch_sampler`: proportional
381
+
382
+ </details>
383
+
384
+ ### Training Logs
385
+ | Epoch | Step | Training Loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
386
+ |:-----:|:----:|:-------------:|:------------------------:|:-------------------------:|
387
+ | 0 | 0 | - | 0.6832 | - |
388
+ | 0.032 | 100 | 3.2593 | 0.8010 | - |
389
+ | 0.064 | 200 | 1.318 | 0.8152 | - |
390
+ | 0.096 | 300 | 1.2552 | 0.8256 | - |
391
+ | 0.128 | 400 | 1.3322 | 0.8141 | - |
392
+ | 0.16 | 500 | 1.4141 | 0.8224 | - |
393
+ | 0.192 | 600 | 1.2339 | 0.8149 | - |
394
+ | 0.224 | 700 | 1.2556 | 0.8091 | - |
395
+ | 0.256 | 800 | 1.138 | 0.8262 | - |
396
+ | 0.288 | 900 | 1.0928 | 0.8311 | - |
397
+ | 0.32 | 1000 | 1.0438 | 0.8341 | - |
398
+ | 0.352 | 1100 | 1.1159 | 0.8323 | - |
399
+ | 0.384 | 1200 | 1.1909 | 0.8472 | - |
400
+ | 0.416 | 1300 | 1.2542 | 0.8543 | - |
401
+ | 0.448 | 1400 | 1.2359 | 0.8574 | - |
402
+ | 0.48 | 1500 | 1.0265 | 0.8712 | - |
403
+ | 0.512 | 1600 | 0.8688 | 0.8783 | - |
404
+ | 0.544 | 1700 | 0.8819 | 0.8841 | - |
405
+ | 0.576 | 1800 | 0.8903 | 0.8931 | - |
406
+ | 0.608 | 1900 | 0.9334 | 0.8858 | - |
407
+ | 0.64 | 2000 | 1.0225 | 0.9028 | - |
408
+ | 0.672 | 2100 | 0.9252 | 0.9034 | - |
409
+ | 0.704 | 2200 | 0.9036 | 0.9033 | - |
410
+ | 0.736 | 2300 | 0.8122 | 0.9040 | - |
411
+ | 0.768 | 2400 | 0.8503 | 0.9058 | - |
412
+ | 0.8 | 2500 | 0.8448 | 0.9055 | - |
413
+ | 0.832 | 2600 | 0.7918 | 0.9039 | - |
414
+ | 0.864 | 2700 | 0.7787 | 0.9025 | - |
415
+ | 0.896 | 2800 | 0.8624 | 0.9034 | - |
416
+ | 0.928 | 2900 | 0.9513 | 0.9058 | - |
417
+ | 0.96 | 3000 | 0.6548 | 0.9072 | - |
418
+ | 0.992 | 3100 | 0.0163 | 0.9060 | - |
419
+ | 1.0 | 3125 | - | - | 0.9186 |
420
+
421
+
422
+ ### Framework Versions
423
+ - Python: 3.10.12
424
+ - Sentence Transformers: 3.0.1
425
+ - Transformers: 4.44.2
426
+ - PyTorch: 2.4.0+cu121
427
+ - Accelerate: 0.33.0
428
+ - Datasets: 2.21.0
429
+ - Tokenizers: 0.19.1
430
+
431
+ ## Citation
432
+
433
+ ### BibTeX
434
+
435
+ #### Sentence Transformers
436
+ ```bibtex
437
+ @inproceedings{reimers-2019-sentence-bert,
438
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
439
+ author = "Reimers, Nils and Gurevych, Iryna",
440
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
441
+ month = "11",
442
+ year = "2019",
443
+ publisher = "Association for Computational Linguistics",
444
+ url = "https://arxiv.org/abs/1908.10084",
445
+ }
446
+ ```
447
+
448
+ #### MultipleNegativesRankingLoss
449
+ ```bibtex
450
+ @misc{henderson2017efficient,
451
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
452
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
453
+ year={2017},
454
+ eprint={1705.00652},
455
+ archivePrefix={arXiv},
456
+ primaryClass={cs.CL}
457
+ }
458
+ ```
459
+
460
+ <!--
461
+ ## Glossary
462
+
463
+ *Clearly define terms in order to be accessible across audiences.*
464
+ -->
465
+
466
+ <!--
467
+ ## Model Card Authors
468
+
469
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
470
+ -->
471
+
472
+ <!--
473
+ ## Model Card Contact
474
+
475
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
476
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb694ed891951136dd79533b633871e4f08a5fc5a22cb83b56d841ca046377f
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff