--- language: ja tags: - audio - automatic-speech-recognition license: apache-2.0 --- # Kotoba-Whisper: kotoba-whisper-v2.0 for Whisper cpp This repository contains the model weights for [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) converted to [GGML](https://github.com/ggerganov/ggml) format. GGML is the weight format expected by C/C++ packages such as [Whisper.cpp](https://github.com/ggerganov/whisper.cpp), for which we provide an example below. ## Usage Kotoba-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original sequential long-form transcription algorithm. Steps for getting started: 1. Clone the Whisper.cpp repository: ``` git clone https://github.com/ggerganov/whisper.cpp.git cd whisper.cpp ``` 2. Download the GGML weights for `kotoba-tech/kotoba-whisper-v2.0`: ```bash wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml/resolve/main/ggml-kotoba-whisper-v2.0.bin -P ./models ``` 3. Run inference using the provided sample audio: ```bash wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/sample_ja_speech.wav make -j && ./main -m models/ggml-kotoba-whisper-v2.0.bin -l ja -f sample_ja_speech.wav --output-file transcription --output-json ``` Note that it runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use ffmpeg like this: ``` ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav ``` ### Benchmark We measure the inference speed of different kotoba-whisper-v2.0 implementations with four different Japanese speech audio on MacBook Pro with the following spec: - Apple M2 Pro - 32GB - 14-inch, 2023 - OS Sonoma Version 14.4.1 (23E224) | audio file | audio duration (min)| [whisper.cpp](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml) (sec) | [faster-whisper](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-faster) (sec)| [hf pipeline](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) (sec) |--------|------|-----|------|-----| |audio 1 | 50.3 | 581 | 2601 | 807 | |audio 2 | 5.6 | 41 | 73 | 61 | |audio 3 | 4.9 | 30 | 141 | 54 | |audio 4 | 5.6 | 35 | 126 | 69 | Scripts to re-run the experiment can be found bellow: * [whisper.cpp](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/blob/main/benchmark.sh) * [faster-whisper](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-faster/blob/main/benchmark.sh) * [hf pipeline](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0/blob/main/benchmark.sh) * Also, currently whisper.cpp and faster-whisper support the [sequential long-form decoding](https://huggingface.co/distil-whisper/distil-large-v3#sequential-long-form), and only Huggingface pipeline supports the [chunked long-form decoding](https://huggingface.co/distil-whisper/distil-large-v3#chunked-long-form), which we empirically found better than the sequnential long-form decoding. ### Quantized Model To use the quantized model, download the quantized GGML weights: ```bash wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml/resolve/main/ggml-kotoba-whisper-v2.0-q5_0.bin -P ./models ``` Run inference on the sample audio: ```bash make -j && ./main -m models/ggml-kotoba-whisper-v2.0-q5_0.bin -l ja -f sample_ja_speech.wav --output-file transcription.quantized --output-json ``` Note that the benchmark results are almost identical to the raw non-quantized model weight. ### Conversion details The original model was converted with the following command: ``` # clone OpenAI whisper and whisper.cpp git clone https://github.com/openai/whisper git clone https://github.com/ggerganov/whisper.cpp # get the models cd whisper.cpp/models git clone https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0 # convert to ggml python3 ./convert-h5-to-ggml.py ./kotoba-whisper-v2.0/ ../../whisper . mv ggml-model.bin ggml-kotoba-whisper-v2.0 # quantize ggml model cd ../ make quantize ./quantize models/ggml-kotoba-whisper-v2.0.bin models/ggml-kotoba-whisper-v2.0-q5_0.bin q5_0 ``` ## Model Details For more information about the kotoba-whisper-v2.0, refer to the original [model card](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).