Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Eval Results
Inference Endpoints
asahi417 commited on
Commit
6dd9441
•
1 Parent(s): 7e01ace

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -0
README.md CHANGED
@@ -107,6 +107,7 @@ it inherits the benefit of the improved latency compared to [openai/whisper-larg
107
  | Model | Params / M | Rel. Latency |
108
  |----------------------------------------------------------------------------------------------|------------|--------------|
109
  | **[kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0)**| **756** | **6.3** |
 
110
  | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
111
 
112
 
@@ -244,6 +245,11 @@ Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
244
  See [https://huggingface.co/distil-whisper/distil-large-v3#model-details](https://huggingface.co/distil-whisper/distil-large-v3#model-details).
245
 
246
 
 
 
 
 
 
247
  ## Evaluation
248
  The following code-snippets demonstrates how to evaluate the kotoba-whisper model on the Japanese subset of the CommonVoice 8.0.
249
  First, we need to install the required packages, including 🤗 Datasets to load the audio data, and 🤗 Evaluate to
 
107
  | Model | Params / M | Rel. Latency |
108
  |----------------------------------------------------------------------------------------------|------------|--------------|
109
  | **[kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0)**| **756** | **6.3** |
110
+ | **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
111
  | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
112
 
113
 
 
245
  See [https://huggingface.co/distil-whisper/distil-large-v3#model-details](https://huggingface.co/distil-whisper/distil-large-v3#model-details).
246
 
247
 
248
+ ## Training
249
+ Please refer to [https://github.com/kotoba-tech/kotoba-whisper](https://github.com/kotoba-tech/kotoba-whisper) for the model training detail.
250
+ Datasets used in distillation and the whole model variations can be found at [https://huggingface.co/japanese-asr](https://huggingface.co/japanese-asr).
251
+
252
+
253
  ## Evaluation
254
  The following code-snippets demonstrates how to evaluate the kotoba-whisper model on the Japanese subset of the CommonVoice 8.0.
255
  First, we need to install the required packages, including 🤗 Datasets to load the audio data, and 🤗 Evaluate to