Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Eval Results
Inference Endpoints
asahi417 commited on
Commit
ac24783
•
1 Parent(s): 45ce8e0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +310 -0
README.md ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: ja
4
+ tags:
5
+ - audio
6
+ - automatic-speech-recognition
7
+ - hf-asr-leaderboard
8
+ widget:
9
+ - example_title: CommonVoice 8.0 (Test Split)
10
+ src: >-
11
+ https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0/resolve/main/sample.flac
12
+ - example_title: JSUT Basic 5000
13
+ src: >-
14
+ https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000/resolve/main/sample.flac
15
+ - example_title: ReazonSpeech (Test Split)
16
+ src: >-
17
+ https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test/resolve/main/sample.flac
18
+ pipeline_tag: automatic-speech-recognition
19
+ metrics:
20
+ - wer
21
+ model-index:
22
+ - name: kotoba-tech/kotoba-whisper-v1.0
23
+ results:
24
+ - task:
25
+ type: automatic-speech-recognition
26
+ dataset:
27
+ name: CommonVoice_8.0 (Japanese)
28
+ type: japanese-asr/ja_asr.common_voice_8_0
29
+ metrics:
30
+ - name: WER
31
+ type: WER
32
+ value: 59.27
33
+ - name: CER
34
+ type: CER
35
+ value: 9.44
36
+ - task:
37
+ type: automatic-speech-recognition
38
+ dataset:
39
+ name: ReazonSpeech (Test)
40
+ type: japanese-asr/ja_asr.reazonspeech_test
41
+ metrics:
42
+ - name: WER
43
+ type: WER
44
+ value: 56.62
45
+ - name: CER
46
+ type: CER
47
+ value: 12.60
48
+ - task:
49
+ type: automatic-speech-recognition
50
+ dataset:
51
+ name: JSUT Basic5000
52
+ type: japanese-asr/ja_asr.jsut_basic5000
53
+ metrics:
54
+ - name: WER
55
+ type: WER
56
+ value: 64.36
57
+ - name: CER
58
+ type: CER
59
+ value: 8.48
60
+ ---
61
+
62
+ # Kotoba-Whisper
63
+ _Kotoba-Whisper_ is a collection of distilled [Whisper](https://arxiv.org/abs/2212.04356) models for Japanese ASR, developed through the collaboration bewteen
64
+ [Asahi Ushio](https://asahiushio.com) and [Kotoba Technologies](https://twitter.com/kotoba_tech).
65
+ Following the original work of distil-whisper ([Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430)),
66
+ we employ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3) as the teacher model, and the student model consists the full encoder of the
67
+ teacher large-v3 model and the decoder with two layers initialized from the first and last layer of the large-v3 model.
68
+ Kotoba-Whisper is **6.3x faster than large-v3**, while retaining as low error rate as the large-v3.
69
+
70
+ As the initial version, we release ***kotoba-whisper-v1.0*** trained on the `large` subset of [ReazonSpeech](https://huggingface.co/datasets/reazon-research/reazonspeech)
71
+ (the largest speech-transcription paired dataset in Japanese extracted from Japanese TV audio recordings),
72
+ which amounts 1,253 hours of audio with 16,861,235 characters of transcriptions (5 sec audio with 18 text tokens in average) after
73
+ those transcriptions more than 10 WER are removed (see [WER Filter](https://huggingface.co/distil-whisper/distil-large-v3#wer-filter) for detail).
74
+ The model was trained for 8 epochs with batch size 256 with sampling rate of 16kHz, and the training and evaluation code to reproduce kotoba-whisper is available at [https://github.com/kotoba-tech/kotoba-whisper](https://github.com/kotoba-tech/kotoba-whisper).
75
+
76
+ Kotoba-whisper-v1.0 achieves better CER and WER than the [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) in the in-domain held-out test set
77
+ from ReazonSpeech, and achieves competitive CER and WER on the out-of-domain test sets including [JSUT basic 5000](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) and
78
+ the Japanese subset from [CommonVoice 8.0](https://huggingface.co/datasets/common_voice) (see [Evaluation](#evaluation) for detail).
79
+
80
+ - ***CER***
81
+
82
+ | Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
83
+ |:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
84
+ | [**kotoba-tech/kotoba-whisper-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 9.44 | 8.48 | **12.60** |
85
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | **8.52** | **7.18** | 15.18 |
86
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.34 | 9.87 | 29.56 |
87
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.26 | 14.22 | 34.29 |
88
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 46.86 | 35.69 | 96.69 |
89
+
90
+ - ***WER***
91
+
92
+ | Model | CommonVoice 8.0 (Japanese) | JSUT Basic 5000 | ReazonSpeech Test |
93
+ |:------------------------------------------------------------------------------------------------|---------------------------:|----------------:|------------------:|
94
+ | [**kotoba-tech/kotoba-whisper-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 59.27 | 64.36 | **56.62** |
95
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | **55.41** | **59.34** | 60.23 |
96
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 63.64 | 69.52 | 76.04 |
97
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 74.21 | 82.02 | 82.99 |
98
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 93.78 | 97.72 | 94.85 |
99
+
100
+ - ***Latency***: As kotoba-whisper uses the same architecture as [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3),
101
+ it inherits the benefit of the improved latency compared to [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
102
+ (**6.3x faster than large-v3**, see the table below taken from [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)).
103
+
104
+ | Model | Params / M | Rel. Latency |
105
+ |----------------------------------------------------------------------------------------------|------------|--------------|
106
+ | **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
107
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
108
+
109
+
110
+ ## Transformers Usage
111
+ Kotoba-Whisper is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
112
+ install the latest version of Transformers.
113
+
114
+ ```bash
115
+ pip install --upgrade pip
116
+ pip install --upgrade transformers accelerate
117
+ ```
118
+
119
+ ### Short-Form Transcription
120
+ The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
121
+ class to transcribe short-form audio files (< 30-seconds) as follows:
122
+
123
+ ```python
124
+ import torch
125
+ from transformers import pipeline
126
+ from datasets import load_dataset
127
+
128
+ # config
129
+ model_id = "kotoba-tech/kotoba-whisper-v1.0"
130
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
131
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
132
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
133
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
134
+
135
+ # load model
136
+ pipe = pipeline(
137
+ "automatic-speech-recognition",
138
+ model=model_id,
139
+ torch_dtype=torch_dtype,
140
+ device=device,
141
+ model_kwargs=model_kwargs
142
+ )
143
+
144
+ # load sample audio
145
+ dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
146
+ sample = dataset[0]["audio"]
147
+
148
+ # run inference
149
+ result = pipe(sample, generate_kwargs=generate_kwargs)
150
+ print(result["text"])
151
+ ```
152
+
153
+ - To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline (make sure the audio is sampled in 16kHz):
154
+ ```diff
155
+ - result = pipe(sample, generate_kwargs=generate_kwargs)
156
+ + result = pipe("audio.mp3", generate_kwargs=generate_kwargs)
157
+ ```
158
+
159
+ - For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
160
+ ```python
161
+ result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
162
+ print(result["chunks"])
163
+ ```
164
+
165
+ ***Sequential Long-Form:*** Kotoba-whisper is designed to be compatible with OpenAI's sequential long-form transcription algorithm. This algorithm uses a sliding window for buffered
166
+ inference of long audio files (> 30-seconds), and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
167
+ As default, if long audio files are passed to the model, it will transcribes with the sequential long-form transcription.
168
+ The sequential long-form algorithm should be used in either of the following scenarios:
169
+
170
+ 1. Transcription accuracy is the most important factor, and latency is less of a consideration
171
+ 2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
172
+
173
+ If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
174
+ described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of
175
+ the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf). The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
176
+ class can be used to transcribe long audio files with the sequential algorithm as follows:
177
+
178
+
179
+ ### Chunked Long-Form
180
+ This algorithm should be used when a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
181
+ the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
182
+ To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
183
+ is optimal. To activate batching over long audio files, pass the argument `batch_size`:
184
+
185
+ ```python
186
+ import torch
187
+ from transformers import pipeline
188
+ from datasets import load_dataset
189
+
190
+ # config
191
+ model_id = "kotoba-tech/kotoba-whisper-v1.0"
192
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
193
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
194
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
195
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
196
+
197
+ # load model
198
+ pipe = pipeline(
199
+ "automatic-speech-recognition",
200
+ model=model_id,
201
+ torch_dtype=torch_dtype,
202
+ device=device,
203
+ model_kwargs=model_kwargs,
204
+ chunk_length_s=15,
205
+ batch_size=16
206
+ )
207
+
208
+ # load sample audio (concatenate instances to create a long audio)
209
+ dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
210
+ sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate']}
211
+
212
+ # run inference
213
+ result = pipe(sample, generate_kwargs=generate_kwargs)
214
+ print(result["text"])
215
+ ```
216
+
217
+
218
+ ### Additional Speed & Memory Improvements
219
+ You can apply additional speed and memory improvements to further reduce the inference speed and VRAM
220
+ requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
221
+ more efficient flash attention version.
222
+
223
+ #### Flash Attention 2
224
+
225
+ We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
226
+ if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
227
+
228
+ ```
229
+ pip install flash-attn --no-build-isolation
230
+ ```
231
+
232
+ Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
233
+
234
+ ```diff
235
+ - model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
236
+ + model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
237
+ ```
238
+
239
+
240
+ ## Model Details
241
+ See [https://huggingface.co/distil-whisper/distil-large-v3#model-details](https://huggingface.co/distil-whisper/distil-large-v3#model-details).
242
+
243
+
244
+ ## Evaluation
245
+ The following code-snippets demonstrates how to evaluate the kotoba-whisper model on the Japanese subset of the CommonVoice 8.0.
246
+ First, we need to install the required packages, including 🤗 Datasets to load the audio data, and 🤗 Evaluate to
247
+ perform the WER calculation:
248
+
249
+ ```bash
250
+ pip install --upgrade pip
251
+ pip install --upgrade transformers datasets[audio] evaluate jiwer
252
+ ```
253
+
254
+ Evaluation can then be run end-to-end with the following example:
255
+
256
+ ```python
257
+ import torch
258
+ from transformers import pipeline
259
+ from datasets import load_dataset
260
+ from evaluate import load
261
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
262
+
263
+ # model config
264
+ model_id = "kotoba-tech/kotoba-whisper-v1.0"
265
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
266
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
267
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
268
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
269
+ normalizer = BasicTextNormalizer()
270
+
271
+ # data config
272
+ dataset_name = "japanese-asr/ja_asr.reazonspeech_test"
273
+ audio_column = 'audio'
274
+ text_column = 'transcription'
275
+
276
+ # load model
277
+ pipe = pipeline(
278
+ "automatic-speech-recognition",
279
+ model=model_id,
280
+ torch_dtype=torch_dtype,
281
+ device=device,
282
+ model_kwargs=model_kwargs,
283
+ batch_size=16
284
+ )
285
+
286
+ # load the dataset and sample the audio with 16kHz
287
+ dataset = load_dataset(dataset_name, split="test")
288
+ transcriptions = pipe(dataset['audio'])
289
+ transcriptions = [normalizer(i['text']).replace(" ", "") for i in transcriptions]
290
+ references = [normalizer(i).replace(" ", "") for i in dataset['transcription']]
291
+
292
+ # compute the CER metric
293
+ cer_metric = load("cer")
294
+ cer = 100 * cer_metric.compute(predictions=transcriptions, references=references)
295
+ print(cer)
296
+ ```
297
+
298
+ The huggingface links to the major Japanese ASR datasets for evaluation are summarized at [here](https://huggingface.co/collections/japanese-asr/japanese-asr-evaluation-dataset-66051a03d6ca494d40baaa26).
299
+ For example, to evaluate the model on JSUT Basic5000, change the `dataset_name`:
300
+
301
+ ```diff
302
+ - dataset_name = "japanese-asr/ja_asr.reazonspeech_test"
303
+ + dataset_name = "japanese-asr/ja_asr.jsut_basic5000"
304
+ ```
305
+
306
+ ## Acknowledgements
307
+ * [OpenAI](https://openai.com/) for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
308
+ * Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration.
309
+ * Hugging Face 🤗 for the [Distil-Whisper codebase](https://github.com/huggingface/distil-whisper).
310
+ * [Reazon Human Interaction Lab](https://research.reazon.jp/) for the [ReazonSpeech dataset](https://huggingface.co/datasets/reazon-research/reazonspeech).