File size: 18,994 Bytes
8069744
3d49cbd
 
8069744
 
 
 
 
 
 
 
 
 
 
 
aaccb5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d49cbd
aaccb5f
 
 
 
8069744
 
 
aaccb5f
 
 
 
8069744
 
 
aaccb5f
 
 
 
8069744
3d49cbd
 
 
 
 
 
aaccb5f
 
 
 
 
 
 
 
 
 
3d49cbd
8069744
 
 
 
 
 
 
aaccb5f
 
8069744
 
 
aaccb5f
8069744
 
 
 
 
aaccb5f
 
 
 
 
 
 
 
 
3d49cbd
8069744
 
 
 
 
 
 
 
 
3d49cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8069744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
986454a
8069744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d49cbd
 
 
 
 
8069744
 
 
 
 
 
 
 
 
3d49cbd
 
 
 
 
 
 
 
 
 
 
8069744
 
 
 
 
986454a
 
 
 
8069744
 
 
 
986454a
8069744
 
986454a
 
8069744
 
 
 
986454a
 
8069744
 
 
986454a
8069744
 
 
 
 
 
 
3d49cbd
986454a
 
 
8069744
 
 
3d49cbd
 
 
aaccb5f
8069744
 
aaccb5f
986454a
aaccb5f
 
 
 
 
 
3d49cbd
8069744
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import requests
from typing import Union, Optional, Dict, List, Any
from collections import defaultdict

import torch
import numpy as np

from transformers.pipelines.audio_utils import ffmpeg_read
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
from transformers.utils import is_torchaudio_available
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from pyannote.audio import Pipeline
from pyannote.core.annotation import Annotation
from punctuators.models import PunctCapSegModelONNX
from diarizers import SegmentationModel


class Punctuator:

    ja_punctuations = ["!", "?", "、", "。"]

    def __init__(self, model: str = "pcs_47lang"):
        self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)

    def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]:

        def validate_punctuation(raw: str, punctuated: str):
            if 'unk' in punctuated.lower() or any(p in raw for p in self.ja_punctuations):
                return raw
            if punctuated.count("。") > 1:
                ind = punctuated.rfind("。")
                punctuated = punctuated.replace("。", "")
                punctuated = punctuated[:ind] + "。" + punctuated[ind:]
            return punctuated

        text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
        return [
            {
                'timestamp': c['timestamp'],
                'speaker': c['speaker'],
                'text': validate_punctuation(c['text'], "".join(e))
            } for c, e in zip(pipeline_chunk, text_edit)
        ]


class SpeakerDiarization:

    def __init__(self,
                 device: torch.device,
                 model_id: str = "pyannote/speaker-diarization-3.1",
                 model_id_diarizers: Optional[str] = None):
        self.device = device
        self.pipeline = Pipeline.from_pretrained(model_id)
        self.pipeline = self.pipeline.to(self.device)
        if model_id_diarizers:
            self.pipeline._segmentation.model = SegmentationModel().from_pretrained(
                model_id_diarizers
            ).to_pyannote_model().to(self.device)

    def __call__(self,
                 audio: Union[torch.Tensor, np.ndarray],
                 sampling_rate: int,
                 num_speakers: Optional[int] = None,
                 min_speakers: Optional[int] = None,
                 max_speakers: Optional[int] = None) -> Annotation:
        if sampling_rate is None:
            raise ValueError("sampling_rate must be provided")
        if type(audio) is np.ndarray:
            audio = torch.as_tensor(audio)
        audio = torch.as_tensor(audio, dtype=torch.float32)
        if len(audio.shape) == 1:
            audio = audio.unsqueeze(0)
        elif len(audio.shape) > 3:
            raise ValueError("audio shape must be (channel, time)")
        audio = {"waveform": audio.to(self.device), "sample_rate": sampling_rate}
        output = self.pipeline(audio, num_speakers=num_speakers, min_speakers=min_speakers, max_speakers=max_speakers)
        return output


class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):

    def __init__(self,
                 model: "PreTrainedModel",
                 model_pyannote: str = "pyannote/speaker-diarization-3.1",
                 model_diarizers: Optional[str] = "diarizers-community/speaker-segmentation-fine-tuned-callhome-jpn",
                 feature_extractor: Union["SequenceFeatureExtractor", str] = None,
                 tokenizer: Optional[PreTrainedTokenizer] = None,
                 device: Union[int, "torch.device"] = None,
                 device_pyannote: Union[int, "torch.device"] = None,
                 torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
                 **kwargs):
        self.type = "seq2seq_whisper"
        if device is None:
            device = "cpu"
        if device_pyannote is None:
            device_pyannote = device
        if type(device_pyannote) is str:
            device_pyannote = torch.device(device_pyannote)
        self.model_speaker_diarization = SpeakerDiarization(
            device=device_pyannote,
            model_id=model_pyannote,
            model_id_diarizers=model_diarizers
        )
        self.punctuator = None
        super().__init__(
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            device=device,
            torch_dtype=torch_dtype,
            **kwargs
        )

    def _sanitize_parameters(self,
                             chunk_length_s=None,
                             stride_length_s=None,
                             ignore_warning=None,
                             decoder_kwargs=None,
                             return_timestamps=None,
                             return_language=None,
                             generate_kwargs=None,
                             max_new_tokens=None,
                             add_punctuation: bool =False,
                             return_unique_speaker: bool =True,
                             num_speakers: Optional[int] = None,
                             min_speakers: Optional[int] = None,
                             max_speakers: Optional[int] = None):
        # No parameters on this pipeline right now
        preprocess_params = {}
        if chunk_length_s is not None:
            preprocess_params["chunk_length_s"] = chunk_length_s
        if stride_length_s is not None:
            preprocess_params["stride_length_s"] = stride_length_s

        forward_params = defaultdict(dict)
        if max_new_tokens is not None:
            forward_params["max_new_tokens"] = max_new_tokens
        if generate_kwargs is not None:
            if max_new_tokens is not None and "max_new_tokens" in generate_kwargs:
                raise ValueError(
                    "`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use"
                    " only 1 version"
                )
            forward_params.update(generate_kwargs)

        postprocess_params = {}
        if decoder_kwargs is not None:
            postprocess_params["decoder_kwargs"] = decoder_kwargs
        if return_timestamps is not None:
            # Check whether we have a valid setting for return_timestamps and throw an error before we perform a forward pass
            if self.type == "seq2seq" and return_timestamps:
                raise ValueError("We cannot return_timestamps yet on non-CTC models apart from Whisper!")
            if self.type == "ctc_with_lm" and return_timestamps != "word":
                raise ValueError("CTC with LM can only predict word level timestamps, set `return_timestamps='word'`")
            if self.type == "ctc" and return_timestamps not in ["char", "word"]:
                raise ValueError(
                    "CTC can either predict character level timestamps, or word level timestamps. "
                    "Set `return_timestamps='char'` or `return_timestamps='word'` as required."
                )
            if self.type == "seq2seq_whisper" and return_timestamps == "char":
                raise ValueError(
                    "Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
                    "Use `return_timestamps='word'` or `return_timestamps=True` respectively."
                )
            forward_params["return_timestamps"] = return_timestamps
            postprocess_params["return_timestamps"] = return_timestamps
        if return_language is not None:
            if self.type != "seq2seq_whisper":
                raise ValueError("Only Whisper can return language for now.")
            postprocess_params["return_language"] = return_language
        postprocess_params["return_language"] = return_language
        postprocess_params["add_punctuation"] = add_punctuation
        postprocess_params["return_unique_speaker"] = return_unique_speaker
        postprocess_params["num_speakers"] = num_speakers
        postprocess_params["min_speakers"] = min_speakers
        postprocess_params["max_speakers"] = max_speakers
        return preprocess_params, forward_params, postprocess_params

    def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None):
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()

        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)

        stride = None
        extra = {}
        if isinstance(inputs, dict):
            stride = inputs.pop("stride", None)
            # Accepting `"array"` which is the key defined in `datasets` for
            # better integration
            if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
                raise ValueError(
                    "When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
                    '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
                    "containing the sampling_rate associated with that array"
                )

            _inputs = inputs.pop("raw", None)
            if _inputs is None:
                # Remove path which will not be used from `datasets`.
                inputs.pop("path", None)
                _inputs = inputs.pop("array", None)
            in_sampling_rate = inputs.pop("sampling_rate")
            extra = inputs
            inputs = _inputs
            if in_sampling_rate != self.feature_extractor.sampling_rate:
                if is_torchaudio_available():
                    from torchaudio import functional as F
                else:
                    raise ImportError(
                        "torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
                        "The torchaudio package can be installed through: `pip install torchaudio`."
                    )

                inputs = F.resample(
                    torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
                ).numpy()
                ratio = self.feature_extractor.sampling_rate / in_sampling_rate
            else:
                ratio = 1
            if stride is not None:
                if stride[0] + stride[1] > inputs.shape[0]:
                    raise ValueError("Stride is too large for input")

                # Stride needs to get the chunk length here, it's going to get
                # swallowed by the `feature_extractor` later, and then batching
                # can add extra data in the inputs, so we need to keep track
                # of the original length in the stride so we can cut properly.
                stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
        if not isinstance(inputs, np.ndarray):
            raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")

        if chunk_length_s:
            if stride_length_s is None:
                stride_length_s = chunk_length_s / 6

            if isinstance(stride_length_s, (int, float)):
                stride_length_s = [stride_length_s, stride_length_s]

            # XXX: Carefuly, this variable will not exist in `seq2seq` setting.
            # Currently chunking is not possible at this level for `seq2seq` so
            # it's ok.
            align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
            chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
            stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
            stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)

            if chunk_len < stride_left + stride_right:
                raise ValueError("Chunk length must be superior to stride length")

            for item in chunk_iter(
                    inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
            ):
                item["audio_array"] = inputs
                yield item
        else:
            if inputs.shape[0] > self.feature_extractor.n_samples:
                processed = self.feature_extractor(
                    inputs,
                    sampling_rate=self.feature_extractor.sampling_rate,
                    truncation=False,
                    padding="longest",
                    return_tensors="pt",
                )
            else:
                processed = self.feature_extractor(
                    inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
                )

            if self.torch_dtype is not None:
                processed = processed.to(dtype=self.torch_dtype)
            if stride is not None:
                processed["stride"] = stride
            yield {"is_last": True, "audio_array": inputs, **processed, **extra}

    def _forward(self, model_inputs, **generate_kwargs):
        attention_mask = model_inputs.pop("attention_mask", None)
        stride = model_inputs.pop("stride", None)
        is_last = model_inputs.pop("is_last")
        audio_array = model_inputs.pop("audio_array")
        encoder = self.model.get_encoder()
        # Consume values so we can let extra information flow freely through
        # the pipeline (important for `partial` in microphone)
        if "input_features" in model_inputs:
            inputs = model_inputs.pop("input_features")
        elif "input_values" in model_inputs:
            inputs = model_inputs.pop("input_values")
        else:
            raise ValueError(
                "Seq2Seq speech recognition model requires either a "
                f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
            )

        # custom processing for Whisper timestamps and word-level timestamps
        generate_kwargs["return_timestamps"] = True
        if inputs.shape[-1] > self.feature_extractor.nb_max_frames:
            generate_kwargs["input_features"] = inputs
        else:
            generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask)

        tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs)
        # whisper longform generation stores timestamps in "segments"
        out = {"tokens": tokens}
        if self.type == "seq2seq_whisper":
            if stride is not None:
                out["stride"] = stride

        # Leftover
        extra = model_inputs
        return {"is_last": is_last, "audio_array": audio_array, **out, **extra}

    def postprocess(self,
                    model_outputs,
                    decoder_kwargs: Optional[Dict] = None,
                    return_language=None,
                    add_punctuation: bool = False,
                    return_unique_speaker: bool = True,
                    num_speakers: Optional[int] = None,
                    min_speakers: Optional[int] = None,
                    max_speakers: Optional[int] = None,
                    *args,
                    **kwargs):
        assert len(model_outputs) > 0
        outputs = super().postprocess(
            model_outputs=model_outputs,
            decoder_kwargs=decoder_kwargs,
            return_timestamps=True,
            return_language=return_language
        )
        audio_array = outputs.pop("audio_array")[0]
        sd = self.model_speaker_diarization(
            audio_array,
            num_speakers=num_speakers,
            min_speakers=min_speakers,
            max_speakers=max_speakers,
            sampling_rate=self.feature_extractor.sampling_rate
        )
        diarization_result = {s: [[i.start, i.end] for i in sd.label_timeline(s)] for s in sd.labels()}
        timelines = sd.get_timeline()

        pointer_ts = 0
        pointer_chunk = 0
        new_chunks = []
        while True:
            if pointer_ts == len(timelines):
                ts = timelines[-1]
                for chunk in outputs["chunks"][pointer_chunk:]:
                    chunk["speaker"] = sd.get_labels(ts)
                    new_chunks.append(chunk)
                break
            if pointer_chunk == len(outputs["chunks"]):
                break
            ts = timelines[pointer_ts]

            chunk = outputs["chunks"][pointer_chunk]
            if "speaker" not in chunk:
                chunk["speaker"] = []

            start, end = chunk["timestamp"]
            if ts.end <= start:
                pointer_ts += 1
            elif end <= ts.start:
                if len(chunk["speaker"]) == 0:
                    chunk["speaker"] += list(sd.get_labels(ts))
                new_chunks.append(chunk)
                pointer_chunk += 1
            else:
                chunk["speaker"] += list(sd.get_labels(ts))
                if ts.end >= end:
                    new_chunks.append(chunk)
                    pointer_chunk += 1
                else:
                    pointer_ts += 1
        for i in new_chunks:
            if "speaker" in i:
                if return_unique_speaker:
                    i["speaker"] = [i["speaker"][0]]
                else:
                    i["speaker"] = list(set(i["speaker"]))
            else:
                i["speaker"] = []
        outputs["chunks"] = new_chunks
        if add_punctuation:
            if self.punctuator is None:
                self.punctuator = Punctuator()
            outputs["chunks"] = self.punctuator.punctuate(outputs["chunks"])
        outputs["text"] = "".join([c["text"] for c in outputs["chunks"]])
        outputs["speakers"] = sd.labels()
        speakers = []
        for s in outputs["speakers"]:
            chunk_s = [c for c in outputs["chunks"] if s in c["speaker"]]
            if len(chunk_s) != 0:
                outputs[f"chunks/{s}"] = chunk_s
                outputs[f"text/{s}"] = "".join([c["text"] for c in outputs["chunks"] if s in c["speaker"]])
                speakers.append(s)
        outputs["speakers"] = speakers
        outputs["diarization_result"] = diarization_result
        return outputs