kotoba-whisper-v2.2 / kotoba_whisper.py
daraiii's picture
ffmpeg_microphone_live利用時のエラー対応
a7e3c07 verified
raw
history blame
13.7 kB
import requests
from typing import Union, Optional, Dict
import torch
import numpy as np
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
from transformers.utils import is_torchaudio_available
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from pyannote.audio import Pipeline
from pyannote.core.annotation import Annotation
from punctuators.models import PunctCapSegModelONNX
from diarizers import SegmentationModel
class Punctuator:
ja_punctuations = ["!", "?", "、", "。"]
def __init__(self, model: str = "1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase"):
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
def punctuate(self, text: str) -> str:
if any(p in text for p in self.ja_punctuations):
return text
punctuated = "".join(self.punctuation_model.infer([text])[0])
if 'unk' in punctuated.lower():
return text
return punctuated
class SpeakerDiarization:
def __init__(self,
device: torch.device,
model_id: str = "pyannote/speaker-diarization-3.1",
model_id_diarizers: Optional[str] = None):
self.device = device
self.pipeline = Pipeline.from_pretrained(model_id)
self.pipeline = self.pipeline.to(self.device)
if model_id_diarizers:
self.pipeline._segmentation.model = SegmentationModel().from_pretrained(
model_id_diarizers
).to_pyannote_model().to(self.device)
def __call__(self,
audio: Union[torch.Tensor, np.ndarray],
sampling_rate: int,
num_speakers: Optional[int] = None,
min_speakers: Optional[int] = None,
max_speakers: Optional[int] = None) -> Annotation:
if sampling_rate is None:
raise ValueError("sampling_rate must be provided")
if type(audio) is np.ndarray:
audio = torch.as_tensor(audio)
audio = torch.as_tensor(audio, dtype=torch.float32)
if len(audio.shape) == 1:
audio = audio.unsqueeze(0)
elif len(audio.shape) > 3:
raise ValueError("audio shape must be (channel, time)")
audio = {"waveform": audio.to(self.device), "sample_rate": sampling_rate}
output = self.pipeline(audio, num_speakers=num_speakers, min_speakers=min_speakers, max_speakers=max_speakers)
return output
class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):
def __init__(self,
model: "PreTrainedModel",
model_pyannote: str = "pyannote/speaker-diarization-3.1",
model_diarizers: Optional[str] = "diarizers-community/speaker-segmentation-fine-tuned-callhome-jpn",
feature_extractor: Union["SequenceFeatureExtractor", str] = None,
tokenizer: Optional[PreTrainedTokenizer] = None,
device: Union[int, "torch.device"] = None,
device_pyannote: Union[int, "torch.device"] = None,
torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
**kwargs):
self.type = "seq2seq_whisper"
if device is None:
device = "cpu"
if device_pyannote is None:
device_pyannote = device
if type(device_pyannote) is str:
device_pyannote = torch.device(device_pyannote)
self.model_speaker_diarization = SpeakerDiarization(
device=device_pyannote,
model_id=model_pyannote,
model_id_diarizers=model_diarizers
)
self.punctuator = None
super().__init__(
model=model,
feature_extractor=feature_extractor,
tokenizer=tokenizer,
device=device,
torch_dtype=torch_dtype,
**kwargs
)
def _sanitize_parameters(self,
chunk_length_s: Optional[int] = None,
stride_length_s: Optional[int] = None,
generate_kwargs: Optional[Dict] = None,
max_new_tokens: Optional[int] = None,
add_punctuation: bool = False,
return_unique_speaker: bool = True,
add_silence_end: Optional[float] = None,
add_silence_start: Optional[float] = None,
num_speakers: Optional[int] = None,
min_speakers: Optional[int] = None,
max_speakers: Optional[int] = None):
preprocess_params = {
"chunk_length_s": chunk_length_s,
"stride_length_s": stride_length_s,
"add_silence_end": add_silence_end,
"add_silence_start": add_silence_start,
"num_speakers": num_speakers,
"min_speakers": min_speakers,
"max_speakers": max_speakers,
}
postprocess_params = {"add_punctuation": add_punctuation, "return_timestamps": True, "return_language": False}
forward_params = {} if generate_kwargs is None else generate_kwargs
forward_params.update({"max_new_tokens": max_new_tokens, "return_timestamps": True, "language": "ja", "task": "transcribe"})
return preprocess_params, forward_params, postprocess_params
def preprocess(self,
inputs,
chunk_length_s: Optional[int] = None,
stride_length_s: Optional[int] = None,
add_silence_end: Optional[float] = None,
add_silence_start: Optional[float] = None,
num_speakers: Optional[int] = None,
min_speakers: Optional[int] = None,
max_speakers: Optional[int] = None):
def _pad_audio_array(_audio):
if add_silence_start:
_audio = np.concatenate([np.zeros(int(self.feature_extractor.sampling_rate * add_silence_start)), _audio])
if add_silence_end:
_audio = np.concatenate([_audio, np.zeros(int(self.feature_extractor.sampling_rate * add_silence_end))])
return _audio
# load file
if isinstance(inputs, str):
if inputs.startswith("http://") or inputs.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file like http_huggingface_co.png
inputs = requests.get(inputs).content
else:
with open(inputs, "rb") as f:
inputs = f.read()
if isinstance(inputs, bytes):
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
if isinstance(inputs, dict):
# Accepting `"array"` which is the key defined in `datasets` for better integration
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
raise ValueError(
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
'"array" key containing the numpy array representing the audio and a "sampling_rate" key, '
"containing the sampling_rate associated with that array"
)
in_sampling_rate = inputs.pop("sampling_rate")
inputs = inputs.pop("array", inputs.pop("raw", None))
if in_sampling_rate != self.feature_extractor.sampling_rate:
if is_torchaudio_available():
from torchaudio import functional as F
else:
raise ImportError(
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
"The torchaudio package can be installed through: `pip install torchaudio`."
)
inputs = F.resample(
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
).numpy()
# validate audio array
if not isinstance(inputs, np.ndarray):
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
if len(inputs.shape) != 1:
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
# diarization
sd = self.model_speaker_diarization(
inputs,
num_speakers=num_speakers,
min_speakers=min_speakers,
max_speakers=max_speakers,
sampling_rate=self.feature_extractor.sampling_rate
)
# loop over audio chunks and speakers
labels = list(sd.labels())
for n, s in enumerate(labels):
timelines = list(sd.label_timeline(s))
for m, i in enumerate(timelines):
start = int(i.start * self.feature_extractor.sampling_rate)
end = int(i.end * self.feature_extractor.sampling_rate)
audio_array = _pad_audio_array(inputs[start: end])
if chunk_length_s is not None:
stride_length_s = chunk_length_s / 6 if stride_length_s is None else stride_length_s
stride_length_s = [stride_length_s, stride_length_s] if isinstance(stride_length_s, (int, float)) else stride_length_s
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
if chunk_len < stride_left + stride_right:
raise ValueError("Chunk length must be superior to stride length")
for item in chunk_iter(
audio_array, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
):
item["speaker_id"] = s
item["speaker_span"] = [i.start, i.end]
item["is_last"] = m == len(timelines) - 1 and n == len(labels) - 1 and item["is_last"]
yield item
else:
if audio_array.shape[0] > self.feature_extractor.n_samples:
processed = self.feature_extractor(
audio_array,
sampling_rate=self.feature_extractor.sampling_rate,
truncation=False,
padding="longest",
return_tensors="pt",
)
else:
processed = self.feature_extractor(
audio_array,
sampling_rate=self.feature_extractor.sampling_rate,
return_tensors="pt"
)
if self.torch_dtype is not None:
processed = processed.to(dtype=self.torch_dtype)
processed["speaker_id"] = s
processed["speaker_span"] = [i.start, i.end]
processed["is_last"] = m == len(timelines) - 1 and n == len(labels) - 1
yield processed
def _forward(self, model_inputs, **generate_kwargs):
generate_kwargs["attention_mask"] = model_inputs.pop("attention_mask", None)
generate_kwargs["input_features"] = model_inputs.pop("input_features")
tokens = self.model.generate(**generate_kwargs)
return {"tokens": tokens, **model_inputs}
def postprocess(self, model_outputs, **postprocess_parameters):
if postprocess_parameters["add_punctuation"] and self.punctuator is None:
self.punctuator = Punctuator()
outputs = {"chunks": []}
for o in model_outputs:
text, chunks = self.tokenizer._decode_asr(
[o],
return_language=postprocess_parameters["return_language"],
return_timestamps=postprocess_parameters["return_timestamps"],
time_precision=self.feature_extractor.chunk_length / self.model.config.max_source_positions,
)
start, end = o["speaker_span"]
new_chunk = []
for c in chunks["chunks"]:
c["timestamp"] = [round(c["timestamp"][0] + start, 2), round(c["timestamp"][0] + end, 2)]
c["speaker_id"] = o["speaker_id"]
new_chunk.append(c)
outputs["chunks"] += new_chunk
outputs["speaker_ids"] = sorted(set([o["speaker_id"] for o in outputs["chunks"]]))
for s in outputs["speaker_ids"]:
outputs[f"chunks/{s}"] = sorted([o for o in outputs["chunks"] if o["speaker_id"] == s], key=lambda x: x["timestamp"][0])
outputs[f"text/{s}"] = "".join([i["text"] for i in outputs[f"chunks/{s}"]])
if postprocess_parameters["add_punctuation"]:
outputs[f"text/{s}"] = self.punctuator.punctuate(outputs[f"text/{s}"])
return outputs