koutch commited on
Commit
9c7ac0a
1 Parent(s): d79eeaf

updated dummy model with new classes

Browse files
staqt/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
staqt/README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ pipeline_tag: text-classification
8
+ ---
9
+
10
+ # /scratch/work/koutchc1/experiments/staqt
11
+
12
+ This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
13
+
14
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
15
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
16
+
17
+ ## Usage
18
+
19
+ To use this model for inference, first install the SetFit library:
20
+
21
+ ```bash
22
+ python -m pip install setfit
23
+ ```
24
+
25
+ You can then run inference as follows:
26
+
27
+ ```python
28
+ from setfit import SetFitModel
29
+
30
+ # Download from Hub and run inference
31
+ model = SetFitModel.from_pretrained("/scratch/work/koutchc1/experiments/staqt")
32
+ # Run inference
33
+ preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
34
+ ```
35
+
36
+ ## BibTeX entry and citation info
37
+
38
+ ```bibtex
39
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
40
+ doi = {10.48550/ARXIV.2209.11055},
41
+ url = {https://arxiv.org/abs/2209.11055},
42
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
43
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
44
+ title = {Efficient Few-Shot Learning Without Prompts},
45
+ publisher = {arXiv},
46
+ year = {2022},
47
+ copyright = {Creative Commons Attribution 4.0 International}
48
+ }
49
+ ```
staqt/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
staqt/config.json ADDED
@@ -0,0 +1,875 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/koutchc1/.cache/torch/sentence_transformers/sileod_deberta-v3-base-tasksource-nli",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifiers_size": [
8
+ 3,
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2,
14
+ 1,
15
+ 2,
16
+ 3,
17
+ 2,
18
+ 2,
19
+ 2,
20
+ 3,
21
+ 3,
22
+ 3,
23
+ 3,
24
+ 1,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2,
29
+ 3,
30
+ 2,
31
+ 2,
32
+ 2,
33
+ 6,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 3,
42
+ 3,
43
+ 3,
44
+ 3,
45
+ 3,
46
+ 3,
47
+ 3,
48
+ 2,
49
+ 3,
50
+ 2,
51
+ 2,
52
+ 2,
53
+ 3,
54
+ 3,
55
+ 3,
56
+ 3,
57
+ 3,
58
+ 3,
59
+ 3,
60
+ 3,
61
+ 3,
62
+ 3,
63
+ 2,
64
+ 2,
65
+ 2,
66
+ 3,
67
+ 3,
68
+ 3,
69
+ 3,
70
+ 3,
71
+ 3,
72
+ 3,
73
+ 3,
74
+ 2,
75
+ 2,
76
+ 2,
77
+ 2,
78
+ 2,
79
+ 47,
80
+ 23,
81
+ 9,
82
+ 1,
83
+ 1,
84
+ 1,
85
+ 1,
86
+ 1,
87
+ 1,
88
+ 1,
89
+ 1,
90
+ 1,
91
+ 1,
92
+ 1,
93
+ 1,
94
+ 1,
95
+ 1,
96
+ 1,
97
+ 1,
98
+ 1,
99
+ 1,
100
+ 1,
101
+ 1,
102
+ 1,
103
+ 1,
104
+ 1,
105
+ 1,
106
+ 1,
107
+ 1,
108
+ 1,
109
+ 1,
110
+ 1,
111
+ 1,
112
+ 1,
113
+ 1,
114
+ 1,
115
+ 1,
116
+ 1,
117
+ 1,
118
+ 1,
119
+ 1,
120
+ 1,
121
+ 1,
122
+ 1,
123
+ 1,
124
+ 1,
125
+ 1,
126
+ 1,
127
+ 1,
128
+ 1,
129
+ 1,
130
+ 1,
131
+ 1,
132
+ 1,
133
+ 1,
134
+ 1,
135
+ 1,
136
+ 1,
137
+ 1,
138
+ 1,
139
+ 1,
140
+ 1,
141
+ 1,
142
+ 1,
143
+ 1,
144
+ 1,
145
+ 1,
146
+ 1,
147
+ 1,
148
+ 1,
149
+ 1,
150
+ 1,
151
+ 1,
152
+ 1,
153
+ 1,
154
+ 1,
155
+ 1,
156
+ 1,
157
+ 1,
158
+ 1,
159
+ 1,
160
+ 1,
161
+ 1,
162
+ 1,
163
+ 1,
164
+ 1,
165
+ 1,
166
+ 1,
167
+ 1,
168
+ 1,
169
+ 1,
170
+ 1,
171
+ 1,
172
+ 1,
173
+ 1,
174
+ 1,
175
+ 1,
176
+ 1,
177
+ 1,
178
+ 1,
179
+ 1,
180
+ 1,
181
+ 1,
182
+ 1,
183
+ 1,
184
+ 1,
185
+ 1,
186
+ 1,
187
+ 1,
188
+ 1,
189
+ 1,
190
+ 1,
191
+ 1,
192
+ 1,
193
+ 1,
194
+ 1,
195
+ 1,
196
+ 1,
197
+ 1,
198
+ 1,
199
+ 1,
200
+ 1,
201
+ 1,
202
+ 1,
203
+ 1,
204
+ 1,
205
+ 1,
206
+ 1,
207
+ 1,
208
+ 1,
209
+ 1,
210
+ 1,
211
+ 2,
212
+ 2,
213
+ 2,
214
+ 2,
215
+ 2,
216
+ 2,
217
+ 20,
218
+ 50,
219
+ 3,
220
+ 3,
221
+ 4,
222
+ 2,
223
+ 8,
224
+ 20,
225
+ 4,
226
+ 2,
227
+ 2,
228
+ 3,
229
+ 2,
230
+ 3,
231
+ 3,
232
+ 3,
233
+ 3,
234
+ 3,
235
+ 174,
236
+ 2,
237
+ 3,
238
+ 2,
239
+ 2,
240
+ 2,
241
+ 2,
242
+ 41,
243
+ 51,
244
+ 2,
245
+ 8,
246
+ 2,
247
+ 16,
248
+ 18,
249
+ 2,
250
+ 2,
251
+ 17,
252
+ 2,
253
+ 3,
254
+ 2,
255
+ 3,
256
+ 12,
257
+ 42,
258
+ 3,
259
+ 7,
260
+ 11,
261
+ 7,
262
+ 4,
263
+ 3,
264
+ 100,
265
+ 13,
266
+ 100,
267
+ 8,
268
+ 1,
269
+ 20,
270
+ 2,
271
+ 2,
272
+ 4,
273
+ 5,
274
+ 3,
275
+ 4,
276
+ 14,
277
+ 2,
278
+ 6,
279
+ 4,
280
+ 2,
281
+ 1,
282
+ 3,
283
+ 10,
284
+ 77,
285
+ 3,
286
+ 10,
287
+ 4,
288
+ 2,
289
+ 7,
290
+ 6,
291
+ 28,
292
+ 3,
293
+ 6,
294
+ 5,
295
+ 7,
296
+ 4,
297
+ 3,
298
+ 6,
299
+ 20,
300
+ 2,
301
+ 2,
302
+ 2,
303
+ 6,
304
+ 2,
305
+ 2,
306
+ 2,
307
+ 7,
308
+ 3,
309
+ 13,
310
+ 9,
311
+ 4,
312
+ 2,
313
+ 2,
314
+ 2,
315
+ 3,
316
+ 4,
317
+ 2,
318
+ 2,
319
+ 2,
320
+ 2,
321
+ 4,
322
+ 1,
323
+ 2,
324
+ 1,
325
+ 13,
326
+ 3,
327
+ 5,
328
+ 11,
329
+ 37,
330
+ 2,
331
+ 49,
332
+ 12,
333
+ 40,
334
+ 10,
335
+ 4,
336
+ 1,
337
+ 2,
338
+ 2,
339
+ 1,
340
+ 5,
341
+ 3,
342
+ 2,
343
+ 3,
344
+ 2,
345
+ 2,
346
+ 2,
347
+ 2,
348
+ 2,
349
+ 3,
350
+ 2,
351
+ 2,
352
+ 12,
353
+ 3,
354
+ 3,
355
+ 2,
356
+ 19,
357
+ 3,
358
+ 1,
359
+ 1,
360
+ 2,
361
+ 2,
362
+ 2,
363
+ 2,
364
+ 2,
365
+ 1,
366
+ 2,
367
+ 2,
368
+ 1,
369
+ 1,
370
+ 2,
371
+ 3,
372
+ 2,
373
+ 1,
374
+ 4,
375
+ 4,
376
+ 1,
377
+ 1,
378
+ 1,
379
+ 2,
380
+ 3,
381
+ 2,
382
+ 3,
383
+ 1,
384
+ 1,
385
+ 2,
386
+ 1,
387
+ 3,
388
+ 2,
389
+ 2,
390
+ 2,
391
+ 2,
392
+ 3,
393
+ 2,
394
+ 2,
395
+ 2,
396
+ 1,
397
+ 3,
398
+ 2,
399
+ 2,
400
+ 1,
401
+ 1,
402
+ 1,
403
+ 1,
404
+ 2,
405
+ 1,
406
+ 1,
407
+ 1,
408
+ 1,
409
+ 4,
410
+ 1,
411
+ 1,
412
+ 1,
413
+ 3,
414
+ 1,
415
+ 2,
416
+ 3,
417
+ 3,
418
+ 3,
419
+ 1,
420
+ 1
421
+ ],
422
+ "hidden_act": "gelu",
423
+ "hidden_dropout_prob": 0.1,
424
+ "hidden_size": 768,
425
+ "id2label": {
426
+ "0": "entailment",
427
+ "1": "neutral",
428
+ "2": "contradiction"
429
+ },
430
+ "initializer_range": 0.02,
431
+ "intermediate_size": 3072,
432
+ "label2id": {
433
+ "contradiction": 2,
434
+ "entailment": 0,
435
+ "neutral": 1
436
+ },
437
+ "layer_norm_eps": 1e-07,
438
+ "max_position_embeddings": 512,
439
+ "max_relative_positions": -1,
440
+ "model_type": "deberta-v2",
441
+ "norm_rel_ebd": "layer_norm",
442
+ "num_attention_heads": 12,
443
+ "num_hidden_layers": 12,
444
+ "pad_token_id": 0,
445
+ "pooler_dropout": 0,
446
+ "pooler_hidden_act": "gelu",
447
+ "pooler_hidden_size": 768,
448
+ "pos_att_type": [
449
+ "p2c",
450
+ "c2p"
451
+ ],
452
+ "position_biased_input": false,
453
+ "position_buckets": 256,
454
+ "relative_attention": true,
455
+ "share_att_key": true,
456
+ "tasks": [
457
+ "glue/mnli",
458
+ "glue/qnli",
459
+ "glue/rte",
460
+ "glue/wnli",
461
+ "glue/mrpc",
462
+ "glue/qqp",
463
+ "glue/stsb",
464
+ "super_glue/boolq",
465
+ "super_glue/cb",
466
+ "super_glue/multirc",
467
+ "super_glue/wic",
468
+ "super_glue/axg",
469
+ "anli/a1",
470
+ "anli/a2",
471
+ "anli/a3",
472
+ "sick/label",
473
+ "sick/relatedness",
474
+ "sick/entailment_AB",
475
+ "snli",
476
+ "scitail/snli_format",
477
+ "hans",
478
+ "WANLI",
479
+ "recast/recast_factuality",
480
+ "recast/recast_verbcorner",
481
+ "recast/recast_puns",
482
+ "recast/recast_kg_relations",
483
+ "recast/recast_ner",
484
+ "recast/recast_sentiment",
485
+ "recast/recast_megaveridicality",
486
+ "recast/recast_verbnet",
487
+ "probability_words_nli/usnli",
488
+ "probability_words_nli/reasoning_2hop",
489
+ "probability_words_nli/reasoning_1hop",
490
+ "nan-nli/joey234--nan-nli",
491
+ "nli_fever",
492
+ "breaking_nli",
493
+ "conj_nli",
494
+ "fracas",
495
+ "dialogue_nli",
496
+ "mpe",
497
+ "dnc",
498
+ "gpt3_nli",
499
+ "recast_white/fnplus",
500
+ "recast_white/sprl",
501
+ "recast_white/dpr",
502
+ "joci",
503
+ "contrast_nli",
504
+ "robust_nli/IS_CS",
505
+ "robust_nli/LI_LI",
506
+ "robust_nli/ST_WO",
507
+ "robust_nli/PI_SP",
508
+ "robust_nli/PI_CD",
509
+ "robust_nli/ST_SE",
510
+ "robust_nli/ST_NE",
511
+ "robust_nli/ST_LM",
512
+ "robust_nli_is_sd",
513
+ "robust_nli_li_ts",
514
+ "add_one_rte",
515
+ "imppres/implicature_quantifiers/log",
516
+ "imppres/implicature_numerals_2_3/log",
517
+ "imppres/implicature_numerals_10_100/log",
518
+ "imppres/implicature_modals/log",
519
+ "imppres/implicature_gradable_verb/log",
520
+ "imppres/implicature_gradable_adjective/log",
521
+ "imppres/implicature_connectives/log",
522
+ "glue_diagnostics/diagnostics",
523
+ "hlgd",
524
+ "paws/labeled_final",
525
+ "paws/labeled_swap",
526
+ "quora",
527
+ "medical_questions_pairs",
528
+ "conll2003/pos_tags",
529
+ "conll2003/chunk_tags",
530
+ "conll2003/ner_tags",
531
+ "hh-rlhf",
532
+ "model-written-evals",
533
+ "truthful_qa/multiple_choice",
534
+ "fig-qa",
535
+ "bigbench/similarities_abstraction",
536
+ "bigbench/tracking_shuffled_objects",
537
+ "bigbench/dyck_languages",
538
+ "bigbench/cause_and_effect",
539
+ "bigbench/contextual_parametric_knowledge_conflicts",
540
+ "bigbench/logical_deduction",
541
+ "bigbench/movie_recommendation",
542
+ "bigbench/hhh_alignment",
543
+ "bigbench/checkmate_in_one",
544
+ "bigbench/discourse_marker_prediction",
545
+ "bigbench/identify_odd_metaphor",
546
+ "bigbench/entailed_polarity",
547
+ "bigbench/novel_concepts",
548
+ "bigbench/nonsense_words_grammar",
549
+ "bigbench/goal_step_wikihow",
550
+ "bigbench/sports_understanding",
551
+ "bigbench/moral_permissibility",
552
+ "bigbench/code_line_description",
553
+ "bigbench/odd_one_out",
554
+ "bigbench/empirical_judgments",
555
+ "bigbench/gre_reading_comprehension",
556
+ "bigbench/reasoning_about_colored_objects",
557
+ "bigbench/identify_math_theorems",
558
+ "bigbench/abstract_narrative_understanding",
559
+ "bigbench/date_understanding",
560
+ "bigbench/play_dialog_same_or_different",
561
+ "bigbench/real_or_fake_text",
562
+ "bigbench/crass_ai",
563
+ "bigbench/international_phonetic_alphabet_nli",
564
+ "bigbench/presuppositions_as_nli",
565
+ "bigbench/ruin_names",
566
+ "bigbench/sentence_ambiguity",
567
+ "bigbench/intent_recognition",
568
+ "bigbench/analytic_entailment",
569
+ "bigbench/conceptual_combinations",
570
+ "bigbench/implicit_relations",
571
+ "bigbench/emojis_emotion_prediction",
572
+ "bigbench/hindu_knowledge",
573
+ "bigbench/elementary_math_qa",
574
+ "bigbench/mathematical_induction",
575
+ "bigbench/irony_identification",
576
+ "bigbench/authorship_verification",
577
+ "bigbench/disambiguation_qa",
578
+ "bigbench/general_knowledge",
579
+ "bigbench/known_unknowns",
580
+ "bigbench/metaphor_boolean",
581
+ "bigbench/logical_args",
582
+ "bigbench/metaphor_understanding",
583
+ "bigbench/arithmetic",
584
+ "bigbench/salient_translation_error_detection",
585
+ "bigbench/human_organs_senses",
586
+ "bigbench/formal_fallacies_syllogisms_negation",
587
+ "bigbench/fantasy_reasoning",
588
+ "bigbench/fact_checker",
589
+ "bigbench/unit_interpretation",
590
+ "bigbench/vitaminc_fact_verification",
591
+ "bigbench/cifar10_classification",
592
+ "bigbench/social_iqa",
593
+ "bigbench/emoji_movie",
594
+ "bigbench/dark_humor_detection",
595
+ "bigbench/understanding_fables",
596
+ "bigbench/symbol_interpretation",
597
+ "bigbench/social_support",
598
+ "bigbench/logical_fallacy_detection",
599
+ "bigbench/causal_judgment",
600
+ "bigbench/strategyqa",
601
+ "bigbench/epistemic_reasoning",
602
+ "bigbench/anachronisms",
603
+ "bigbench/mnist_ascii",
604
+ "bigbench/crash_blossom",
605
+ "bigbench/english_proverbs",
606
+ "bigbench/cs_algorithms",
607
+ "bigbench/simple_ethical_questions",
608
+ "bigbench/hyperbaton",
609
+ "bigbench/key_value_maps",
610
+ "bigbench/physics",
611
+ "bigbench/figure_of_speech_detection",
612
+ "bigbench/undo_permutation",
613
+ "bigbench/timedial",
614
+ "bigbench/geometric_shapes",
615
+ "bigbench/analogical_similarity",
616
+ "bigbench/color",
617
+ "bigbench/question_selection",
618
+ "bigbench/evaluating_information_essentiality",
619
+ "bigbench/phrase_relatedness",
620
+ "bigbench/logic_grid_puzzle",
621
+ "bigbench/misconceptions",
622
+ "bigbench/winowhy",
623
+ "bigbench/snarks",
624
+ "bigbench/temporal_sequences",
625
+ "bigbench/riddle_sense",
626
+ "bigbench/implicatures",
627
+ "bigbench/logical_sequence",
628
+ "bigbench/suicide_risk",
629
+ "bigbench/physical_intuition",
630
+ "bigbench/movie_dialog_same_or_different",
631
+ "bigbench/navigate",
632
+ "bigbench/penguins_in_a_table",
633
+ "bigbench/strange_stories",
634
+ "bigbench/bbq_lite_json",
635
+ "cos_e/v1.0",
636
+ "cosmos_qa",
637
+ "dream",
638
+ "openbookqa",
639
+ "qasc",
640
+ "quartz",
641
+ "quail",
642
+ "head_qa/en",
643
+ "sciq",
644
+ "social_i_qa",
645
+ "wiki_hop",
646
+ "wiqa",
647
+ "piqa",
648
+ "hellaswag",
649
+ "super_glue/copa",
650
+ "balanced-copa",
651
+ "e-CARE",
652
+ "art",
653
+ "winogrande/winogrande_xl",
654
+ "codah/codah",
655
+ "ai2_arc/ARC-Easy/challenge",
656
+ "ai2_arc/ARC-Challenge/challenge",
657
+ "definite_pronoun_resolution",
658
+ "swag",
659
+ "math_qa",
660
+ "glue/cola",
661
+ "glue/sst2",
662
+ "utilitarianism",
663
+ "amazon_counterfactual/en",
664
+ "insincere-questions",
665
+ "toxic_conversations",
666
+ "TuringBench",
667
+ "trec",
668
+ "vitaminc/tals--vitaminc",
669
+ "hope_edi/english",
670
+ "rumoureval_2019/RumourEval2019",
671
+ "ethos/binary",
672
+ "ethos/multilabel",
673
+ "tweet_eval/emoji",
674
+ "tweet_eval/emotion",
675
+ "tweet_eval/hate",
676
+ "tweet_eval/offensive",
677
+ "tweet_eval/sentiment",
678
+ "tweet_eval/irony",
679
+ "tweet_eval/stance_atheism",
680
+ "tweet_eval/stance_climate",
681
+ "tweet_eval/stance_hillary",
682
+ "tweet_eval/stance_feminist",
683
+ "tweet_eval/stance_abortion",
684
+ "discovery/discovery",
685
+ "pragmeval/squinky-informativeness",
686
+ "pragmeval/verifiability",
687
+ "pragmeval/squinky-formality",
688
+ "pragmeval/squinky-implicature",
689
+ "pragmeval/emobank-dominance",
690
+ "pragmeval/emobank-arousal",
691
+ "pragmeval/switchboard",
692
+ "pragmeval/mrda",
693
+ "pragmeval/emobank-valence",
694
+ "pragmeval/persuasiveness-premisetype",
695
+ "pragmeval/persuasiveness-relevance",
696
+ "pragmeval/pdtb",
697
+ "pragmeval/stac",
698
+ "pragmeval/persuasiveness-strength",
699
+ "pragmeval/sarcasm",
700
+ "pragmeval/gum",
701
+ "pragmeval/persuasiveness-eloquence",
702
+ "pragmeval/persuasiveness-claimtype",
703
+ "pragmeval/persuasiveness-specificity",
704
+ "pragmeval/emergent",
705
+ "silicone/maptask",
706
+ "silicone/oasis",
707
+ "silicone/meld_s",
708
+ "silicone/meld_e",
709
+ "silicone/iemocap",
710
+ "silicone/dyda_e",
711
+ "silicone/dyda_da",
712
+ "silicone/sem",
713
+ "lex_glue/eurlex",
714
+ "lex_glue/scotus",
715
+ "lex_glue/ledgar",
716
+ "lex_glue/unfair_tos",
717
+ "lex_glue/case_hold",
718
+ "language-identification",
719
+ "imdb",
720
+ "rotten_tomatoes",
721
+ "ag_news",
722
+ "yelp_review_full/yelp_review_full",
723
+ "financial_phrasebank/sentences_allagree",
724
+ "poem_sentiment",
725
+ "dbpedia_14/dbpedia_14",
726
+ "amazon_polarity/amazon_polarity",
727
+ "app_reviews",
728
+ "hate_speech18",
729
+ "sms_spam",
730
+ "humicroedit/subtask-1",
731
+ "humicroedit/subtask-2",
732
+ "snips_built_in_intents",
733
+ "banking77",
734
+ "hate_speech_offensive",
735
+ "yahoo_answers_topics",
736
+ "stackoverflow-questions",
737
+ "hyperpartisan_news",
738
+ "sciie",
739
+ "citation_intent",
740
+ "go_emotions/simplified",
741
+ "scicite",
742
+ "liar",
743
+ "lexical_relation_classification/CogALexV",
744
+ "lexical_relation_classification/EVALution",
745
+ "lexical_relation_classification/K&H+N",
746
+ "lexical_relation_classification/ROOT09",
747
+ "lexical_relation_classification/BLESS",
748
+ "linguisticprobing/top_constituents",
749
+ "linguisticprobing/bigram_shift",
750
+ "linguisticprobing/odd_man_out",
751
+ "linguisticprobing/coordination_inversion",
752
+ "linguisticprobing/sentence_length",
753
+ "linguisticprobing/past_present",
754
+ "linguisticprobing/obj_number",
755
+ "linguisticprobing/subj_number",
756
+ "linguisticprobing/tree_depth",
757
+ "crowdflower/economic-news",
758
+ "crowdflower/text_emotion",
759
+ "crowdflower/political-media-message",
760
+ "crowdflower/sentiment_nuclear_power",
761
+ "crowdflower/political-media-bias",
762
+ "crowdflower/political-media-audience",
763
+ "crowdflower/tweet_global_warming",
764
+ "crowdflower/airline-sentiment",
765
+ "crowdflower/corporate-messaging",
766
+ "ethics/commonsense",
767
+ "ethics/deontology",
768
+ "ethics/justice",
769
+ "ethics/virtue",
770
+ "emo/emo2019",
771
+ "google_wellformed_query",
772
+ "tweets_hate_speech_detection",
773
+ "has_part",
774
+ "wnut_17/wnut_17",
775
+ "ncbi_disease/ncbi_disease",
776
+ "acronym_identification",
777
+ "jnlpba/jnlpba",
778
+ "ontonotes_english/SpeedOfMagic--ontonotes_english",
779
+ "blog_authorship_corpus/gender",
780
+ "blog_authorship_corpus/age",
781
+ "blog_authorship_corpus/horoscope",
782
+ "blog_authorship_corpus/job",
783
+ "open_question_type",
784
+ "health_fact",
785
+ "commonsense_qa",
786
+ "mc_taco",
787
+ "ade_corpus_v2/Ade_corpus_v2_classification",
788
+ "discosense",
789
+ "circa",
790
+ "EffectiveFeedbackStudentWriting",
791
+ "promptSentiment",
792
+ "promptNLI",
793
+ "promptSpoke",
794
+ "promptProficiency",
795
+ "promptGrammar",
796
+ "promptCoherence",
797
+ "phrase_similarity",
798
+ "scientific-exaggeration-detection",
799
+ "quarel",
800
+ "fever-evidence-related/mwong--fever-related",
801
+ "numer_sense",
802
+ "dynasent/dynabench.dynasent.r1.all/r1",
803
+ "dynasent/dynabench.dynasent.r2.all/r2",
804
+ "Sarcasm_News_Headline",
805
+ "sem_eval_2010_task_8",
806
+ "auditor_review/demo-org--auditor_review",
807
+ "medmcqa",
808
+ "aqua_rat/tokenized",
809
+ "Dynasent_Disagreement",
810
+ "Politeness_Disagreement",
811
+ "SBIC_Disagreement",
812
+ "SChem_Disagreement",
813
+ "Dilemmas_Disagreement",
814
+ "logiqa",
815
+ "wiki_qa",
816
+ "cycic_classification",
817
+ "cycic_multiplechoice",
818
+ "sts-companion",
819
+ "commonsense_qa_2.0",
820
+ "lingnli",
821
+ "monotonicity-entailment",
822
+ "arct",
823
+ "scinli",
824
+ "naturallogic",
825
+ "onestop_qa",
826
+ "moral_stories/full",
827
+ "prost",
828
+ "dynahate",
829
+ "syntactic-augmentation-nli",
830
+ "autotnli",
831
+ "CONDAQA",
832
+ "webgpt_comparisons",
833
+ "synthetic-instruct-gptj-pairwise",
834
+ "scruples",
835
+ "wouldyourather",
836
+ "attempto-nli",
837
+ "defeasible-nli/atomic",
838
+ "defeasible-nli/snli",
839
+ "nli-veridicality-transitivity",
840
+ "natural-language-satisfiability",
841
+ "lonli",
842
+ "dadc-limit-nli",
843
+ "FLUTE",
844
+ "strategy-qa",
845
+ "summarize_from_feedback/comparisons",
846
+ "folio",
847
+ "tomi-nli",
848
+ "avicenna",
849
+ "SHP",
850
+ "MedQA-USMLE-4-options-hf",
851
+ "wikimedqa/medwiki",
852
+ "cicero",
853
+ "CREAK",
854
+ "mutual",
855
+ "NeQA",
856
+ "quote-repetition",
857
+ "redefine-math",
858
+ "puzzte",
859
+ "implicatures",
860
+ "race/high",
861
+ "race/middle",
862
+ "spartqa-yn",
863
+ "spartqa-mchoice",
864
+ "babi_nli",
865
+ "gen_debiased_nli",
866
+ "imppres/presupposition",
867
+ "/prag",
868
+ "blimp-2",
869
+ "mmlu-4"
870
+ ],
871
+ "torch_dtype": "float32",
872
+ "transformers_version": "4.26.1",
873
+ "type_vocab_size": 0,
874
+ "vocab_size": 128100
875
+ }
staqt/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.26.1",
5
+ "pytorch": "1.13.1+cu117"
6
+ }
7
+ }
staqt/model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a68ccff67e6520e9a2accdee19b6b891fe7539a62523c23a79450d2fae57e8
3
+ size 37719
staqt/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
staqt/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b51f6f931ae34699d1e71f743e45c94e0c3dc0c511b509bf96c110d915fe012
3
+ size 735397417
staqt/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
staqt/special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
staqt/spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
staqt/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
staqt/tokenizer_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": false,
5
+ "eos_token": "[SEP]",
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 1000000000000000019884624838656,
8
+ "name_or_path": "/home/koutchc1/.cache/torch/sentence_transformers/sileod_deberta-v3-base-tasksource-nli",
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "sp_model_kwargs": {},
12
+ "special_tokens_map_file": null,
13
+ "split_by_punct": false,
14
+ "tokenizer_class": "DebertaV2Tokenizer",
15
+ "unk_token": "[UNK]",
16
+ "vocab_type": "spm"
17
+ }