Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.74 +/- 17.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0680933f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0680938040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06809380d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0680938160>", "_build": "<function ActorCriticPolicy._build at 0x7f06809381f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0680938280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0680938310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06809383a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0680938430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06809384c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0680938550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06809385e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f068092bde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673991814611627540, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1UUb24Y8q7FnEEvMmTQTylWCs9aGcnvQAAgD8AAIA/Gm8wPU4quD72z8C84GiIvqu3cT2rpgu8AAAAAAAAAACAYuy92M34Pu09JT5uvY6+vTt+PTKdZL0AAAAAAAAAALNzgD3hbou6qJ/yN68i6DKJ6hO7IAANtwAAgD8AAIA/zW2uPAoJXLvy9Q+8uT+RPKeEj7xwQXk9AACAPwAAgD/NSNs8cdi8PQAyAb66WE6+FZOAu/tlkbwAAAAAAAAAAE0DJD3bYqI93teXO/0Xdb5ikFu91l4SvQAAAAAAAAAAZvN9vVxuuz+BDwK/l6qoPQ3eIL0eKI++AAAAAAAAAACNlCw+y2QfP41/7b0rg7++nLxRPYPlGr4AAAAAAAAAAMDotz2sUqo/lS3WPqOkqb6M5Qo+xTNbPgAAAAAAAAAAM/B2PbcBEL1Nkdm9qUfmvR9zpL2Fil++AACAPwAAgD+zGBy9UY6uPzXB4b7ycLW+WhEAvFO7Ib4AAAAAAAAAAMBBJT466zM/pi7ivBN9lr6cBSY972orPAAAAAAAAAAAMLGIvrnwVT9KwGY8N4+Dvni3e7685Qg+AAAAAAAAAAAG+4g+GEqXP+Yerj6vruK+eIerPhghhDwAAAAAAAAAAJp/sD32jC66Ky7YtusCrLHf3fG5uK34NQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzo5U3zmMckCUhpRSlIwBbJRNTwGMAXSUR0CTR9UZeiSJdX2UKGgGaAloD0MIpG/SNKiPckCUhpRSlGgVTUYBaBZHQJNH9/Ue+251fZQoaAZoCWgPQwj3Ax4YgGxxQJSGlFKUaBVNFwFoFkdAk0kGuHN5dHV9lChoBmgJaA9DCBhBYyYRMXFAlIaUUpRoFU1oAWgWR0CTSTHKOktVdX2UKGgGaAloD0MI7wIlBRZWcECUhpRSlGgVTWIBaBZHQJNJwAyVObl1fZQoaAZoCWgPQwj/PA0Y5JZxQJSGlFKUaBVNcQFoFkdAk0pKn3ta6nV9lChoBmgJaA9DCNk+5C0XlHFAlIaUUpRoFU1/AWgWR0CTSvKHfuTidX2UKGgGaAloD0MIF2TL8vVnbECUhpRSlGgVTXcBaBZHQJNMNoakyk91fZQoaAZoCWgPQwg9npYfeFFyQJSGlFKUaBVNGQFoFkdAk04ReTmnwXV9lChoBmgJaA9DCDCbAMPyfztAlIaUUpRoFUvbaBZHQJNOr7VJ+Uh1fZQoaAZoCWgPQwhuawvPizlyQJSGlFKUaBVL8mgWR0CTT7l67dzodX2UKGgGaAloD0MIaogq/BkNbUCUhpRSlGgVTU8BaBZHQJNP+L2pQ1t1fZQoaAZoCWgPQwhQGJRp9EJxQJSGlFKUaBVNGwFoFkdAk1CIzi0fHXV9lChoBmgJaA9DCE5+i04WMW1AlIaUUpRoFU1fAWgWR0CTULonrpqzdX2UKGgGaAloD0MIISOgwhEkG8CUhpRSlGgVS/BoFkdAk1E3maH9FXV9lChoBmgJaA9DCP8gkiGH4XBAlIaUUpRoFU0qAWgWR0CTUUDRc/t6dX2UKGgGaAloD0MIkkHuIoyycECUhpRSlGgVTTQBaBZHQJNRe72+PBB1fZQoaAZoCWgPQwjU8gNX+RZtQJSGlFKUaBVNQQFoFkdAk1Kn4XXRPXV9lChoBmgJaA9DCPipKjQQu3BAlIaUUpRoFU0oAWgWR0CTUtjnFHawdX2UKGgGaAloD0MII/Weyql4ckCUhpRSlGgVTSYBaBZHQJNTiRr8BMl1fZQoaAZoCWgPQwi5jJsa6O5tQJSGlFKUaBVNhAFoFkdAk1QcUmD15HV9lChoBmgJaA9DCElL5e1IknJAlIaUUpRoFU0lAWgWR0CTVKb8m8dxdX2UKGgGaAloD0MI/S/XosUEcUCUhpRSlGgVTVkBaBZHQJNVb2Xb/Ot1fZQoaAZoCWgPQwjVBFH3AV1uQJSGlFKUaBVNNwFoFkdAk1ZdG/etS3V9lChoBmgJaA9DCPd2S3LAIEJAlIaUUpRoFUvsaBZHQJNWZV1fVqh1fZQoaAZoCWgPQwgm/ijqTGBwQJSGlFKUaBVNHgFoFkdAk1kPpljEvXV9lChoBmgJaA9DCJwaaD6n1nJAlIaUUpRoFU0IAWgWR0CTWS5FgDzRdX2UKGgGaAloD0MIC7d8JGXacUCUhpRSlGgVTTIBaBZHQJNaICMglnh1fZQoaAZoCWgPQwi9/E6TmS9vQJSGlFKUaBVNZgFoFkdAk1pJflZHNHV9lChoBmgJaA9DCP+z5sffgHJAlIaUUpRoFU0UAWgWR0CTWoQEpy6udX2UKGgGaAloD0MI1/hM9g/UcECUhpRSlGgVTTYBaBZHQJNazGT9sJp1fZQoaAZoCWgPQwhyiLg5lURyQJSGlFKUaBVNHgFoFkdAk11Lrs0HhXV9lChoBmgJaA9DCIUKDi8IBm5AlIaUUpRoFU1mAWgWR0CTXUy7f51vdX2UKGgGaAloD0MIucSRB6JKb0CUhpRSlGgVTW4BaBZHQJNdj+vQnhN1fZQoaAZoCWgPQwjMejGUkz5wQJSGlFKUaBVNSAFoFkdAk13Lxd6cAnV9lChoBmgJaA9DCJombD+ZfnFAlIaUUpRoFU0PAWgWR0CTXhmVJL/TdX2UKGgGaAloD0MIfnGpSttQcUCUhpRSlGgVTVsBaBZHQJNef+yZ8a51fZQoaAZoCWgPQwjZ690fr8BwQJSGlFKUaBVNZgFoFkdAk2AYRdyDI3V9lChoBmgJaA9DCLUYPEx7zG1AlIaUUpRoFU1JAWgWR0CTYc9c8kledX2UKGgGaAloD0MILPTBMjaKUUCUhpRSlGgVS+hoFkdAk2K3/YJ3PnV9lChoBmgJaA9DCP6ZQXwg3HFAlIaUUpRoFU2LAWgWR0CTYy3ueBhAdX2UKGgGaAloD0MI2bW93ZKtbECUhpRSlGgVTTIBaBZHQJNk7SOR1YB1fZQoaAZoCWgPQwgcCTTYVExwQJSGlFKUaBVNNAFoFkdAk2Vwkona4HV9lChoBmgJaA9DCPT7/s3LmHBAlIaUUpRoFU1YAWgWR0CTZZBHkLhKdX2UKGgGaAloD0MIPudu10ugb0CUhpRSlGgVTVwBaBZHQJNlm6lLvkR1fZQoaAZoCWgPQwjjOPBqObRuQJSGlFKUaBVN0gFoFkdAk2cwaaTfSHV9lChoBmgJaA9DCJiKjXkd4UxAlIaUUpRoFU0iAWgWR0CTZ5fsNUfgdX2UKGgGaAloD0MIoblOI23EcUCUhpRSlGgVTXMBaBZHQJNnmBnSOR11fZQoaAZoCWgPQwhnDd5XZRlyQJSGlFKUaBVNHgFoFkdAk2eyb+cYqHV9lChoBmgJaA9DCFx0stR6b3BAlIaUUpRoFU0iAWgWR0CTaFp0wJw9dX2UKGgGaAloD0MIRKSmXUzCcUCUhpRSlGgVTToBaBZHQJN7ogxJul51fZQoaAZoCWgPQwhKtrqcUvtwQJSGlFKUaBVNMAFoFkdAk3wM1O0sv3V9lChoBmgJaA9DCNBDbRvGUXFAlIaUUpRoFU19AWgWR0CTfTQA+6iCdX2UKGgGaAloD0MIoYUEjC4QcECUhpRSlGgVTWsBaBZHQJN/5bu+h5B1fZQoaAZoCWgPQwjKiXYVkkZxQJSGlFKUaBVNHwFoFkdAk4BDd1uBMHV9lChoBmgJaA9DCPUPIhlyonBAlIaUUpRoFU1MAWgWR0CTgKAvtdAxdX2UKGgGaAloD0MIDkxuFFk0cUCUhpRSlGgVTToBaBZHQJOA2BnSOR11fZQoaAZoCWgPQwhlUkMbgMdSQJSGlFKUaBVL0WgWR0CTgY9kSVW0dX2UKGgGaAloD0MIePATB1BRcUCUhpRSlGgVTRkBaBZHQJOCRGQSzxB1fZQoaAZoCWgPQwgBofXwZQFuQJSGlFKUaBVNKgFoFkdAk4LOXE61cHV9lChoBmgJaA9DCATLETIQx25AlIaUUpRoFU1PAWgWR0CTg8VYp2ECdX2UKGgGaAloD0MI5A8GnjvgcUCUhpRSlGgVTXABaBZHQJOFufcvduZ1fZQoaAZoCWgPQwgaGk8EcYBuQJSGlFKUaBVNIwFoFkdAk4XEYTCcgHV9lChoBmgJaA9DCDiFlQrqN3BAlIaUUpRoFU1JAWgWR0CThdfsNUfgdX2UKGgGaAloD0MI4EkLl1VQb0CUhpRSlGgVTUkBaBZHQJOGL5wfhdd1fZQoaAZoCWgPQwghVn+EITxwQJSGlFKUaBVNTgFoFkdAk4Zv0I1LrXV9lChoBmgJaA9DCITVWMLaSXNAlIaUUpRoFU0jAWgWR0CThqIn0CiidX2UKGgGaAloD0MIysUYWEfHb0CUhpRSlGgVTVYBaBZHQJOJqW7e2ux1fZQoaAZoCWgPQwjRlnMpLoBsQJSGlFKUaBVNGAFoFkdAk4sqhlDneXV9lChoBmgJaA9DCAaFQZlGnm1AlIaUUpRoFU0pAWgWR0CTi69WIXTFdX2UKGgGaAloD0MIscOY9PescECUhpRSlGgVTUIBaBZHQJOMUr7O3Uh1fZQoaAZoCWgPQwjmP6TfPl1yQJSGlFKUaBVNIgFoFkdAk4xtaQmu1XV9lChoBmgJaA9DCK6cvTNa925AlIaUUpRoFU1WAWgWR0CTjLtzjm0WdX2UKGgGaAloD0MIEK/rF2w9ckCUhpRSlGgVTR4BaBZHQJONY3hn8Kp1fZQoaAZoCWgPQwiJ0Ag27rJyQJSGlFKUaBVNQgFoFkdAk44pF1B+nnV9lChoBmgJaA9DCMrBbAIMbm1AlIaUUpRoFU1YAWgWR0CTkGnPmgandX2UKGgGaAloD0MIVDcXf9sycUCUhpRSlGgVTUABaBZHQJORYCW/rSp1fZQoaAZoCWgPQwg6sYf2sT5uQJSGlFKUaBVNRAFoFkdAk5GUeU6gd3V9lChoBmgJaA9DCEz/klTmfXFAlIaUUpRoFU1OAWgWR0CTkg0EHMUzdX2UKGgGaAloD0MIfGRz1TydckCUhpRSlGgVTVkBaBZHQJOS6TUy57R1fZQoaAZoCWgPQwhCJa5jnB5yQJSGlFKUaBVNVAFoFkdAk5NH2h7E53V9lChoBmgJaA9DCC8012mkc01AlIaUUpRoFUv9aBZHQJOUtWgezUt1fZQoaAZoCWgPQwhMVG8NrDlyQJSGlFKUaBVNJAFoFkdAk5TOhPCVKXV9lChoBmgJaA9DCONtpdcmVnJAlIaUUpRoFU2VAWgWR0CTlWfyf+S9dX2UKGgGaAloD0MIt3pOet+PcUCUhpRSlGgVTQ4BaBZHQJOVqrBCUot1fZQoaAZoCWgPQwiZS6q2m4JSQJSGlFKUaBVL1mgWR0CTlhFUADJVdX2UKGgGaAloD0MIjEtV2uLncECUhpRSlGgVTRkBaBZHQJOXkssg+yJ1fZQoaAZoCWgPQwixwi0fCdBxQJSGlFKUaBVNPAFoFkdAk5e0HyEtd3V9lChoBmgJaA9DCNy93CcHhnJAlIaUUpRoFU1LAWgWR0CTmJrwvxpddX2UKGgGaAloD0MIste7P56GcUCUhpRSlGgVTSwDaBZHQJOZBabF0gd1fZQoaAZoCWgPQwi94NOcPGJtQJSGlFKUaBVNZAFoFkdAk5ksJ2MbWHV9lChoBmgJaA9DCGpPyTmxUHNAlIaUUpRoFU0xAWgWR0CTmxZn+Q2ddX2UKGgGaAloD0MIvw6cM6Kab0CUhpRSlGgVTSUBaBZHQJObhkCmuT11fZQoaAZoCWgPQwg/WMaG7l1sQJSGlFKUaBVNPQFoFkdAk50u4G2TgXV9lChoBmgJaA9DCLw9CAF5L25AlIaUUpRoFUv7aBZHQJOdVdfLLZB1fZQoaAZoCWgPQwgnFY21vxxuQJSGlFKUaBVNYAFoFkdAk54KW5YozHV9lChoBmgJaA9DCHjPgeWI7mxAlIaUUpRoFU1PAWgWR0CTnqoN/e+FdX2UKGgGaAloD0MIqMgh4mbvbECUhpRSlGgVTSEBaBZHQJOfxPO6d2B1fZQoaAZoCWgPQwhinSrfMxtvQJSGlFKUaBVNMwFoFkdAk6AlyR0U5HV9lChoBmgJaA9DCG10zk+x1XBAlIaUUpRoFU1wAWgWR0CToEACnxaxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:319f2c91c2353a597b095d3c9273d3c2db2751876cb4f1e97316a1a92ef34366
|
3 |
+
size 147412
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0680933f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0680938040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06809380d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0680938160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f06809381f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0680938280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0680938310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06809383a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0680938430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06809384c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0680938550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06809385e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f068092bde0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673991814611627540,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1UUb24Y8q7FnEEvMmTQTylWCs9aGcnvQAAgD8AAIA/Gm8wPU4quD72z8C84GiIvqu3cT2rpgu8AAAAAAAAAACAYuy92M34Pu09JT5uvY6+vTt+PTKdZL0AAAAAAAAAALNzgD3hbou6qJ/yN68i6DKJ6hO7IAANtwAAgD8AAIA/zW2uPAoJXLvy9Q+8uT+RPKeEj7xwQXk9AACAPwAAgD/NSNs8cdi8PQAyAb66WE6+FZOAu/tlkbwAAAAAAAAAAE0DJD3bYqI93teXO/0Xdb5ikFu91l4SvQAAAAAAAAAAZvN9vVxuuz+BDwK/l6qoPQ3eIL0eKI++AAAAAAAAAACNlCw+y2QfP41/7b0rg7++nLxRPYPlGr4AAAAAAAAAAMDotz2sUqo/lS3WPqOkqb6M5Qo+xTNbPgAAAAAAAAAAM/B2PbcBEL1Nkdm9qUfmvR9zpL2Fil++AACAPwAAgD+zGBy9UY6uPzXB4b7ycLW+WhEAvFO7Ib4AAAAAAAAAAMBBJT466zM/pi7ivBN9lr6cBSY972orPAAAAAAAAAAAMLGIvrnwVT9KwGY8N4+Dvni3e7685Qg+AAAAAAAAAAAG+4g+GEqXP+Yerj6vruK+eIerPhghhDwAAAAAAAAAAJp/sD32jC66Ky7YtusCrLHf3fG5uK34NQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzo5U3zmMckCUhpRSlIwBbJRNTwGMAXSUR0CTR9UZeiSJdX2UKGgGaAloD0MIpG/SNKiPckCUhpRSlGgVTUYBaBZHQJNH9/Ue+251fZQoaAZoCWgPQwj3Ax4YgGxxQJSGlFKUaBVNFwFoFkdAk0kGuHN5dHV9lChoBmgJaA9DCBhBYyYRMXFAlIaUUpRoFU1oAWgWR0CTSTHKOktVdX2UKGgGaAloD0MI7wIlBRZWcECUhpRSlGgVTWIBaBZHQJNJwAyVObl1fZQoaAZoCWgPQwj/PA0Y5JZxQJSGlFKUaBVNcQFoFkdAk0pKn3ta6nV9lChoBmgJaA9DCNk+5C0XlHFAlIaUUpRoFU1/AWgWR0CTSvKHfuTidX2UKGgGaAloD0MIF2TL8vVnbECUhpRSlGgVTXcBaBZHQJNMNoakyk91fZQoaAZoCWgPQwg9npYfeFFyQJSGlFKUaBVNGQFoFkdAk04ReTmnwXV9lChoBmgJaA9DCDCbAMPyfztAlIaUUpRoFUvbaBZHQJNOr7VJ+Uh1fZQoaAZoCWgPQwhuawvPizlyQJSGlFKUaBVL8mgWR0CTT7l67dzodX2UKGgGaAloD0MIaogq/BkNbUCUhpRSlGgVTU8BaBZHQJNP+L2pQ1t1fZQoaAZoCWgPQwhQGJRp9EJxQJSGlFKUaBVNGwFoFkdAk1CIzi0fHXV9lChoBmgJaA9DCE5+i04WMW1AlIaUUpRoFU1fAWgWR0CTULonrpqzdX2UKGgGaAloD0MIISOgwhEkG8CUhpRSlGgVS/BoFkdAk1E3maH9FXV9lChoBmgJaA9DCP8gkiGH4XBAlIaUUpRoFU0qAWgWR0CTUUDRc/t6dX2UKGgGaAloD0MIkkHuIoyycECUhpRSlGgVTTQBaBZHQJNRe72+PBB1fZQoaAZoCWgPQwjU8gNX+RZtQJSGlFKUaBVNQQFoFkdAk1Kn4XXRPXV9lChoBmgJaA9DCPipKjQQu3BAlIaUUpRoFU0oAWgWR0CTUtjnFHawdX2UKGgGaAloD0MII/Weyql4ckCUhpRSlGgVTSYBaBZHQJNTiRr8BMl1fZQoaAZoCWgPQwi5jJsa6O5tQJSGlFKUaBVNhAFoFkdAk1QcUmD15HV9lChoBmgJaA9DCElL5e1IknJAlIaUUpRoFU0lAWgWR0CTVKb8m8dxdX2UKGgGaAloD0MI/S/XosUEcUCUhpRSlGgVTVkBaBZHQJNVb2Xb/Ot1fZQoaAZoCWgPQwjVBFH3AV1uQJSGlFKUaBVNNwFoFkdAk1ZdG/etS3V9lChoBmgJaA9DCPd2S3LAIEJAlIaUUpRoFUvsaBZHQJNWZV1fVqh1fZQoaAZoCWgPQwgm/ijqTGBwQJSGlFKUaBVNHgFoFkdAk1kPpljEvXV9lChoBmgJaA9DCJwaaD6n1nJAlIaUUpRoFU0IAWgWR0CTWS5FgDzRdX2UKGgGaAloD0MIC7d8JGXacUCUhpRSlGgVTTIBaBZHQJNaICMglnh1fZQoaAZoCWgPQwi9/E6TmS9vQJSGlFKUaBVNZgFoFkdAk1pJflZHNHV9lChoBmgJaA9DCP+z5sffgHJAlIaUUpRoFU0UAWgWR0CTWoQEpy6udX2UKGgGaAloD0MI1/hM9g/UcECUhpRSlGgVTTYBaBZHQJNazGT9sJp1fZQoaAZoCWgPQwhyiLg5lURyQJSGlFKUaBVNHgFoFkdAk11Lrs0HhXV9lChoBmgJaA9DCIUKDi8IBm5AlIaUUpRoFU1mAWgWR0CTXUy7f51vdX2UKGgGaAloD0MIucSRB6JKb0CUhpRSlGgVTW4BaBZHQJNdj+vQnhN1fZQoaAZoCWgPQwjMejGUkz5wQJSGlFKUaBVNSAFoFkdAk13Lxd6cAnV9lChoBmgJaA9DCJombD+ZfnFAlIaUUpRoFU0PAWgWR0CTXhmVJL/TdX2UKGgGaAloD0MIfnGpSttQcUCUhpRSlGgVTVsBaBZHQJNef+yZ8a51fZQoaAZoCWgPQwjZ690fr8BwQJSGlFKUaBVNZgFoFkdAk2AYRdyDI3V9lChoBmgJaA9DCLUYPEx7zG1AlIaUUpRoFU1JAWgWR0CTYc9c8kledX2UKGgGaAloD0MILPTBMjaKUUCUhpRSlGgVS+hoFkdAk2K3/YJ3PnV9lChoBmgJaA9DCP6ZQXwg3HFAlIaUUpRoFU2LAWgWR0CTYy3ueBhAdX2UKGgGaAloD0MI2bW93ZKtbECUhpRSlGgVTTIBaBZHQJNk7SOR1YB1fZQoaAZoCWgPQwgcCTTYVExwQJSGlFKUaBVNNAFoFkdAk2Vwkona4HV9lChoBmgJaA9DCPT7/s3LmHBAlIaUUpRoFU1YAWgWR0CTZZBHkLhKdX2UKGgGaAloD0MIPudu10ugb0CUhpRSlGgVTVwBaBZHQJNlm6lLvkR1fZQoaAZoCWgPQwjjOPBqObRuQJSGlFKUaBVN0gFoFkdAk2cwaaTfSHV9lChoBmgJaA9DCJiKjXkd4UxAlIaUUpRoFU0iAWgWR0CTZ5fsNUfgdX2UKGgGaAloD0MIoblOI23EcUCUhpRSlGgVTXMBaBZHQJNnmBnSOR11fZQoaAZoCWgPQwhnDd5XZRlyQJSGlFKUaBVNHgFoFkdAk2eyb+cYqHV9lChoBmgJaA9DCFx0stR6b3BAlIaUUpRoFU0iAWgWR0CTaFp0wJw9dX2UKGgGaAloD0MIRKSmXUzCcUCUhpRSlGgVTToBaBZHQJN7ogxJul51fZQoaAZoCWgPQwhKtrqcUvtwQJSGlFKUaBVNMAFoFkdAk3wM1O0sv3V9lChoBmgJaA9DCNBDbRvGUXFAlIaUUpRoFU19AWgWR0CTfTQA+6iCdX2UKGgGaAloD0MIoYUEjC4QcECUhpRSlGgVTWsBaBZHQJN/5bu+h5B1fZQoaAZoCWgPQwjKiXYVkkZxQJSGlFKUaBVNHwFoFkdAk4BDd1uBMHV9lChoBmgJaA9DCPUPIhlyonBAlIaUUpRoFU1MAWgWR0CTgKAvtdAxdX2UKGgGaAloD0MIDkxuFFk0cUCUhpRSlGgVTToBaBZHQJOA2BnSOR11fZQoaAZoCWgPQwhlUkMbgMdSQJSGlFKUaBVL0WgWR0CTgY9kSVW0dX2UKGgGaAloD0MIePATB1BRcUCUhpRSlGgVTRkBaBZHQJOCRGQSzxB1fZQoaAZoCWgPQwgBofXwZQFuQJSGlFKUaBVNKgFoFkdAk4LOXE61cHV9lChoBmgJaA9DCATLETIQx25AlIaUUpRoFU1PAWgWR0CTg8VYp2ECdX2UKGgGaAloD0MI5A8GnjvgcUCUhpRSlGgVTXABaBZHQJOFufcvduZ1fZQoaAZoCWgPQwgaGk8EcYBuQJSGlFKUaBVNIwFoFkdAk4XEYTCcgHV9lChoBmgJaA9DCDiFlQrqN3BAlIaUUpRoFU1JAWgWR0CThdfsNUfgdX2UKGgGaAloD0MI4EkLl1VQb0CUhpRSlGgVTUkBaBZHQJOGL5wfhdd1fZQoaAZoCWgPQwghVn+EITxwQJSGlFKUaBVNTgFoFkdAk4Zv0I1LrXV9lChoBmgJaA9DCITVWMLaSXNAlIaUUpRoFU0jAWgWR0CThqIn0CiidX2UKGgGaAloD0MIysUYWEfHb0CUhpRSlGgVTVYBaBZHQJOJqW7e2ux1fZQoaAZoCWgPQwjRlnMpLoBsQJSGlFKUaBVNGAFoFkdAk4sqhlDneXV9lChoBmgJaA9DCAaFQZlGnm1AlIaUUpRoFU0pAWgWR0CTi69WIXTFdX2UKGgGaAloD0MIscOY9PescECUhpRSlGgVTUIBaBZHQJOMUr7O3Uh1fZQoaAZoCWgPQwjmP6TfPl1yQJSGlFKUaBVNIgFoFkdAk4xtaQmu1XV9lChoBmgJaA9DCK6cvTNa925AlIaUUpRoFU1WAWgWR0CTjLtzjm0WdX2UKGgGaAloD0MIEK/rF2w9ckCUhpRSlGgVTR4BaBZHQJONY3hn8Kp1fZQoaAZoCWgPQwiJ0Ag27rJyQJSGlFKUaBVNQgFoFkdAk44pF1B+nnV9lChoBmgJaA9DCMrBbAIMbm1AlIaUUpRoFU1YAWgWR0CTkGnPmgandX2UKGgGaAloD0MIVDcXf9sycUCUhpRSlGgVTUABaBZHQJORYCW/rSp1fZQoaAZoCWgPQwg6sYf2sT5uQJSGlFKUaBVNRAFoFkdAk5GUeU6gd3V9lChoBmgJaA9DCEz/klTmfXFAlIaUUpRoFU1OAWgWR0CTkg0EHMUzdX2UKGgGaAloD0MIfGRz1TydckCUhpRSlGgVTVkBaBZHQJOS6TUy57R1fZQoaAZoCWgPQwhCJa5jnB5yQJSGlFKUaBVNVAFoFkdAk5NH2h7E53V9lChoBmgJaA9DCC8012mkc01AlIaUUpRoFUv9aBZHQJOUtWgezUt1fZQoaAZoCWgPQwhMVG8NrDlyQJSGlFKUaBVNJAFoFkdAk5TOhPCVKXV9lChoBmgJaA9DCONtpdcmVnJAlIaUUpRoFU2VAWgWR0CTlWfyf+S9dX2UKGgGaAloD0MIt3pOet+PcUCUhpRSlGgVTQ4BaBZHQJOVqrBCUot1fZQoaAZoCWgPQwiZS6q2m4JSQJSGlFKUaBVL1mgWR0CTlhFUADJVdX2UKGgGaAloD0MIjEtV2uLncECUhpRSlGgVTRkBaBZHQJOXkssg+yJ1fZQoaAZoCWgPQwixwi0fCdBxQJSGlFKUaBVNPAFoFkdAk5e0HyEtd3V9lChoBmgJaA9DCNy93CcHhnJAlIaUUpRoFU1LAWgWR0CTmJrwvxpddX2UKGgGaAloD0MIste7P56GcUCUhpRSlGgVTSwDaBZHQJOZBabF0gd1fZQoaAZoCWgPQwi94NOcPGJtQJSGlFKUaBVNZAFoFkdAk5ksJ2MbWHV9lChoBmgJaA9DCGpPyTmxUHNAlIaUUpRoFU0xAWgWR0CTmxZn+Q2ddX2UKGgGaAloD0MIvw6cM6Kab0CUhpRSlGgVTSUBaBZHQJObhkCmuT11fZQoaAZoCWgPQwg/WMaG7l1sQJSGlFKUaBVNPQFoFkdAk50u4G2TgXV9lChoBmgJaA9DCLw9CAF5L25AlIaUUpRoFUv7aBZHQJOdVdfLLZB1fZQoaAZoCWgPQwgnFY21vxxuQJSGlFKUaBVNYAFoFkdAk54KW5YozHV9lChoBmgJaA9DCHjPgeWI7mxAlIaUUpRoFU1PAWgWR0CTnqoN/e+FdX2UKGgGaAloD0MIqMgh4mbvbECUhpRSlGgVTSEBaBZHQJOfxPO6d2B1fZQoaAZoCWgPQwhinSrfMxtvQJSGlFKUaBVNMwFoFkdAk6AlyR0U5HV9lChoBmgJaA9DCG10zk+x1XBAlIaUUpRoFU1wAWgWR0CToEACnxaxdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61215b148c73b891d35f903859486298bd5e7a4cd0a136a4855900021e02f021
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78af68c59c8733479e95252f914e417044e5fb9809cb66a4cea966e4c2d16026
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (200 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.7372035934261, "std_reward": 17.08861291881024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T22:19:35.665134"}
|