File size: 46,559 Bytes
d1ca0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
---
base_model: dunzhang/stella_en_400M_v5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:491850
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: f"What constitutes 'Received Information' as defined in this contract?"
  sentences:
  - Notwithstanding the foregoing, it is understood that Auriemma has no control or
    influence over any decisions by the University of Connecticut to enter into any
    arrangement or agreement with any Berkshire Competitor.
  - 'Received Information may include any of the following: geo-location, IP address,
    device ID or unique identifier, device manufacturer and type, device and hardware
    settings, ID for advertising, ad data, operating system, operator, IMSI (international
    mobile subscriber identity), certain information regarding contacts contained
    in user device phone books ("Contacts"), phone number, connection information,
    screen resolution, usage statistics, device log and event information, incoming
    and outgoing calls and messages, times and date of calls, duration of calls, behavioral
    information, version of the Software used, and other information based on interactions
    with the Services.'
  - '"Received Information" means a user''s private, personal or personally identifying
    or identifiable data or information, including content and contact information
    such as name, email address, or social network identifier.'
- source_sentence: f"What constitutes 'Received Information' as defined in this contract?"
  sentences:
  - (a) "Confidential Information" means nonpublic information that a party to this
    Agreement ("Disclosing Party") designates as being confidential to the party that
    receives such information ("Receiving Party") or which, under the circumstances
    surrounding disclosure ought to be treated as confidential by the Receiving Party.
  - '"Received Information" means a user''s private, personal or personally identifying
    or identifiable data or information, including content and contact information
    such as name, email address, or social network identifier.'
  - 'Facebook Connect: If you use one of our applications and connect to your Facebook
    account within such application, you will be providing us with basic account information
    i.e., user ID, name, email, gender, birthday, current city, profile picture URL
    and the user IDs of your friends who have also connected with our applications.
    In addition, we will cache data we receive from the Facebook APIs to improve our
    user experience. If you want us to delete the data we receive from Facebook about
    you, please contact us through support.storm8.com.'
- source_sentence: Is Google considered a third-party vendor in this context?
  sentences:
  - 1.10 "Purchase Order" shall mean a written purchase order issued to ESTABLISHMENT
    by APOLLO for the purchase of Product under this Agreement.
  - 'Banking and Joint Venture Funds


    The funds of the Joint Venture will be placed in such investments and banking
    accounts as will be designated by the Participants. Joint Venture funds will be
    held in the name of the Joint Venture and will not be commingled with those of
    any other person or entity.'
  - Google, as a third party vendor, uses cookies to serve ads on our site. Google's
    use of the DART cookie enables it to serve ads to our users based on their visit
    to our site and other sites on the Internet. Users may opt out of the use of the
    DART cookie by visiting the Google ad and content network privacy policy.
- source_sentence: What purposes does the entity have for processing the data gathered
    from its clientele?
  sentences:
  - Metavante hereby grants to Customer a personal, nonexclusive, and nontransferable
    license and right, for the duration of this Agreement, to use the Incidental Software
    solely in accordance with the applicable Documentation and for no other purposes.
  - 'B. HOW WE USE COLLECTED INFORMATION a. Any of the information (Personal and Non-personal)
    we collect from you may be used in one of the following ways: To personalize user
    experience- We may use Information to understand demographics, customer interest,
    and other trends among our Users;'
  - To the extent that the Parties have jointly developed any New Amorphous Alloy
    Technology and they have agreed that such New Amorphous Alloy Technology will
    be jointly owned, as set forth in Section 8.2 above, each Party hereby assigns
    to the other, and will cause its employees, contractors, representatives, successors,
    assigns, Affiliates, parents, subsidiaries, officers and directors to assign to
    the other, a co-equal right, title and interest in and to any such jointly developed
    New Amorphous Alloy Technology. T
- source_sentence: How might an individual residing in the western coastal state of
    the U.S. obtain a record of the entities to which a particular application has
    provided their personal data for marketing use within the last calendar year?
  sentences:
  - The term “Confidential Information” means any and all tangible and intangible
    information disclosed to Receiver in oral, written, graphic, recorded, photographic,
    any machine-readable or in any other medium or form relating to the intellectual
    property, management, operations, products, inventions, suppliers, customers,
    financials of VIDAR or any present or contemplated project, contract or relationship
    between VIDAR and Receiver, including without limitation, any and all plans, Intellectual
    Property (defined below), know-how, computer programs, software (source and object
    code), algorithms, computer processing systems, techniques, methodologies, formulae,
    compilations of information, designs, drawings, schematics, analyses, evaluations,
    formulations, ingredients, samples, processes, machines, prototypes, mock-ups,
    product performance data, proposals, job notes, reports, records, specifications,
    manuals, supplier and customer lists and information, licenses, the prices it
    obtains or has obtained for the licensing of its software products and services,
    purchase and sales records, marketing information or any other information concerning
    the business and goodwill of VIDAR and any information which is identified as
    being of a confidential or proprietary nature or should be considered confidential
    under the circumstances.
  - 'Specific Location Practices: California, EU residents California Privacy Rights
    Residents of the State of California can request a list of all third-parties to
    which our App has disclosed certain personal information (as defined by California
    law) during the preceding year for those third-parties'' direct marketing purposes.
    If you are a California resident and want such a list, please contact us at CaliforniaRequest@viber.com.
    For all requests, please ensure you put the statement "Your California Privacy
    Rights" in the body of your request, as well as your name, street address, city,
    state, and zip code. In the body of your request, please provide enough information
    for us to determine if this applies to you. You need to attest to the fact that
    you are a California resident and provide a current California address for our
    response. Please note that we will not accept requests via the telephone, mail,
    or by facsimile, and we are not responsible for notices that are not labeled or
    sent properly, or that do not have complete information. Viber does not currently
    take actions to respond to Do Not Track signals because a uniform technological
    standard has not yet been developed. We continue to review new technologies and
    may adopt a standard once one is created.'
  - Neither party may assign this Agreement or any rights and obligations under this
    Agreement to any third party without the written consent of the other party.
model-index:
- name: SentenceTransformer based on dunzhang/stella_en_400M_v5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: stella en 400M v5
      type: stella_en_400M_v5
    metrics:
    - type: cosine_accuracy@1
      value: 0.5986368799697085
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7519878833775085
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8008330177962892
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8527073078379401
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5986368799697085
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2506626277925028
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16016660355925785
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08527073078379402
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5986368799697085
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7519878833775085
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8008330177962892
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8527073078379401
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7263474307341174
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6857685280347147
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6903360937337177
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.5937145020825445
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7425217720560394
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8008330177962892
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8511927300265051
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5937145020825445
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24750725735201312
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.16016660355925785
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.0851192730026505
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5937145020825445
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7425217720560394
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8008330177962892
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8511927300265051
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7219180873294574
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6804977070974791
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.685154909034552
      name: Dot Map@100
---

# SentenceTransformer based on dunzhang/stella_en_400M_v5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [dunzhang/stella_en_400M_v5](https://huggingface.co/dunzhang/stella_en_400M_v5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [dunzhang/stella_en_400M_v5](https://huggingface.co/dunzhang/stella_en_400M_v5) <!-- at revision 1bb50bc7bb726810eac2140e62155b88b0df198f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kperkins411/stella_en_400M_v5_MultipleNegativesRankingLoss")
# Run inference
sentences = [
    'How might an individual residing in the western coastal state of the U.S. obtain a record of the entities to which a particular application has provided their personal data for marketing use within the last calendar year?',
    'Specific Location Practices: California, EU residents California Privacy Rights Residents of the State of California can request a list of all third-parties to which our App has disclosed certain personal information (as defined by California law) during the preceding year for those third-parties\' direct marketing purposes. If you are a California resident and want such a list, please contact us at CaliforniaRequest@viber.com. For all requests, please ensure you put the statement "Your California Privacy Rights" in the body of your request, as well as your name, street address, city, state, and zip code. In the body of your request, please provide enough information for us to determine if this applies to you. You need to attest to the fact that you are a California resident and provide a current California address for our response. Please note that we will not accept requests via the telephone, mail, or by facsimile, and we are not responsible for notices that are not labeled or sent properly, or that do not have complete information. Viber does not currently take actions to respond to Do Not Track signals because a uniform technological standard has not yet been developed. We continue to review new technologies and may adopt a standard once one is created.',
    'The term “Confidential Information” means any and all tangible and intangible information disclosed to Receiver in oral, written, graphic, recorded, photographic, any machine-readable or in any other medium or form relating to the intellectual property, management, operations, products, inventions, suppliers, customers, financials of VIDAR or any present or contemplated project, contract or relationship between VIDAR and Receiver, including without limitation, any and all plans, Intellectual Property (defined below), know-how, computer programs, software (source and object code), algorithms, computer processing systems, techniques, methodologies, formulae, compilations of information, designs, drawings, schematics, analyses, evaluations, formulations, ingredients, samples, processes, machines, prototypes, mock-ups, product performance data, proposals, job notes, reports, records, specifications, manuals, supplier and customer lists and information, licenses, the prices it obtains or has obtained for the licensing of its software products and services, purchase and sales records, marketing information or any other information concerning the business and goodwill of VIDAR and any information which is identified as being of a confidential or proprietary nature or should be considered confidential under the circumstances.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `stella_en_400M_v5`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5986     |
| cosine_accuracy@3   | 0.752      |
| cosine_accuracy@5   | 0.8008     |
| cosine_accuracy@10  | 0.8527     |
| cosine_precision@1  | 0.5986     |
| cosine_precision@3  | 0.2507     |
| cosine_precision@5  | 0.1602     |
| cosine_precision@10 | 0.0853     |
| cosine_recall@1     | 0.5986     |
| cosine_recall@3     | 0.752      |
| cosine_recall@5     | 0.8008     |
| cosine_recall@10    | 0.8527     |
| cosine_ndcg@10      | 0.7263     |
| cosine_mrr@10       | 0.6858     |
| **cosine_map@100**  | **0.6903** |
| dot_accuracy@1      | 0.5937     |
| dot_accuracy@3      | 0.7425     |
| dot_accuracy@5      | 0.8008     |
| dot_accuracy@10     | 0.8512     |
| dot_precision@1     | 0.5937     |
| dot_precision@3     | 0.2475     |
| dot_precision@5     | 0.1602     |
| dot_precision@10    | 0.0851     |
| dot_recall@1        | 0.5937     |
| dot_recall@3        | 0.7425     |
| dot_recall@5        | 0.8008     |
| dot_recall@10       | 0.8512     |
| dot_ndcg@10         | 0.7219     |
| dot_mrr@10          | 0.6805     |
| dot_map@100         | 0.6852     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 491,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.09 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 102.69 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 96.04 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                                                                  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:--------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What safeguards are in place to protect the information obtained from third-party sources?</code> | <code>Information We Collect From Other Sources We may also receive information from other sources and combine that with information we collect through our Services. For example: If you choose to link, create, or log in to your Uber account with a payment provider (e.g., Google Wallet) or social media service (e.g., Facebook), or if you engage with a separate app or website that uses our API (or whose API we use), we may receive information about you or your connections from that site or app.</code> | <code>We receive data from Public Resources (as defined under the Terms of Service) associated with users and user Contacts, including from social networks to which users or user Contacts are registered, such as Facebook, Google+, Linkedin, Twitter, and Foursquare.</code>                                                                                                                                                                                                                                                                                                                                                                  |
  | <code>What safeguards are in place to protect the information obtained from third-party sources?</code> | <code>Information We Collect From Other Sources We may also receive information from other sources and combine that with information we collect through our Services. For example: If you choose to link, create, or log in to your Uber account with a payment provider (e.g., Google Wallet) or social media service (e.g., Facebook), or if you engage with a separate app or website that uses our API (or whose API we use), we may receive information about you or your connections from that site or app.</code> | <code>You also may be able to link an account from a social networking service (e.g., Facebook, Google+, Yahoo!) to an account through our Services. This may allow you to use your credentials from the other site or service to sign in to certain features on our Services. If you link your account from a third-party site or service, we may collect information from those third-party accounts, and any information that we collect will be governed by this Privacy Policy.</code>                                                                                                                                                       |
  | <code>What safeguards are in place to protect the information obtained from third-party sources?</code> | <code>Information We Collect From Other Sources We may also receive information from other sources and combine that with information we collect through our Services. For example: If you choose to link, create, or log in to your Uber account with a payment provider (e.g., Google Wallet) or social media service (e.g., Facebook), or if you engage with a separate app or website that uses our API (or whose API we use), we may receive information about you or your connections from that site or app.</code> | <code>Information We Collect Personal data ("Personal Information") may be required to use some services offered by PSafe, or users may have the option of providing it, including name, home address, email address and contact telephone number. We may collect Personal Information about you from third parties and add this information to the information we have already collected from you via our services. PSafe may confirm the provided Personal Information by consulting with public authorities, specialized companies or databases. The information that PSafe obtains from these entities will be treated confidentially.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 6,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | string                                                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 23.16 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 96.66 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 94.79 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                       | positive                                                                                                                                                                                                                                                                              | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What term is used to describe sensitive materials unique to the involved entities and not accessible by the general populace, regardless of its physical state or the manner of its revelation?</code> | <code>For purposes of this Agreement, "Confidential Information" means any data or information that is proprietary to the Parties and not generally known to the public, whether in tangible or intangible form, whenever and however disclosed, including but not limited to:</code> | <code>A. "Confidential Information" of a party shall mean any trade secrets, know-how, inventions, products, designs, methods, techniques, systems, processes, software programs, works of authorship, business plans, customer lists, projects, plans, pricing, proposals and any other information which a party discloses to the Recipient Party that:  (i) if disclosed in writing is clearly marked as confidential or carries a similar legend; or  (ii) if disclosed verbally or in tangible form is identified as confidential at the time of disclosure, then summarized in a writing so marked by the Disclosing Party and delivered to the Recipient Party with fifteen (15) days.</code> |
  | <code>What term is used to describe sensitive materials unique to the involved entities and not accessible by the general populace, regardless of its physical state or the manner of its revelation?</code> | <code>For purposes of this Agreement, "Confidential Information" means any data or information that is proprietary to the Parties and not generally known to the public, whether in tangible or intangible form, whenever and however disclosed, including but not limited to:</code> | <code>1. Disclosure: Recipient agrees not to disclose and the Discloser agrees to let the Recipient have the access to the Confidential Information as identified and reduced in writing or provided verbally or in any other way not reduced in writing at the time of such disclosure of the information.</code>                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>What term is used to describe sensitive materials unique to the involved entities and not accessible by the general populace, regardless of its physical state or the manner of its revelation?</code> | <code>For purposes of this Agreement, "Confidential Information" means any data or information that is proprietary to the Parties and not generally known to the public, whether in tangible or intangible form, whenever and however disclosed, including but not limited to:</code> | <code>Confidential Information - information of whatever kind and in whatever form contained (and includes in particular but without prejudice to the generality of the foregoing, documents, drawings, computerized information, films, tapes, specifications, designs, models, equipment or data of any kind) which is clearly identified by the Disclosing Party as confidential by an appropriate legend or if orally disclosed then upon disclosure or within 30 days of such oral disclosure identified in writing by the Disclosing Party as confidential.</code>                                                                                                                             |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step     | Training Loss | loss       | stella_en_400M_v5_cosine_map@100 |
|:-------:|:--------:|:-------------:|:----------:|:--------------------------------:|
| 0       | 0        | -             | -          | 0.5279                           |
| 0.0260  | 100      | 1.5185        | -          | -                                |
| 0.0520  | 200      | 0.9779        | -          | -                                |
| 0.0781  | 300      | 0.828         | -          | -                                |
| 0.1041  | 400      | 0.7038        | -          | -                                |
| 0.1301  | 500      | 0.6537        | -          | -                                |
| 0.1561  | 600      | 0.5801        | -          | -                                |
| 0.1821  | 700      | 0.5588        | -          | -                                |
| 0.2082  | 800      | 0.5124        | -          | -                                |
| 0.2342  | 900      | 0.4827        | -          | -                                |
| 0.2602  | 1000     | 0.4672        | -          | -                                |
| 0.2862  | 1100     | 0.4285        | -          | -                                |
| 0.3123  | 1200     | 0.3965        | -          | -                                |
| 0.3383  | 1300     | 0.3759        | -          | -                                |
| 0.3643  | 1400     | 0.3612        | -          | -                                |
| 0.3903  | 1500     | 0.3209        | -          | -                                |
| 0.4163  | 1600     | 0.3108        | -          | -                                |
| 0.4424  | 1700     | 0.3012        | -          | -                                |
| 0.4684  | 1800     | 0.2837        | -          | -                                |
| 0.4944  | 1900     | 0.2801        | -          | -                                |
| 0.5204  | 2000     | 0.2581        | -          | -                                |
| 0.5464  | 2100     | 0.2502        | -          | -                                |
| 0.5725  | 2200     | 0.2502        | -          | -                                |
| 0.5985  | 2300     | 0.2271        | -          | -                                |
| 0.6245  | 2400     | 0.2265        | -          | -                                |
| 0.6505  | 2500     | 0.2144        | -          | -                                |
| 0.6766  | 2600     | 0.2161        | -          | -                                |
| 0.7026  | 2700     | 0.2071        | -          | -                                |
| 0.7286  | 2800     | 0.197         | -          | -                                |
| 0.7546  | 2900     | 0.1875        | -          | -                                |
| 0.7806  | 3000     | 0.1846        | -          | -                                |
| 0.8067  | 3100     | 0.1827        | -          | -                                |
| 0.8327  | 3200     | 0.1732        | -          | -                                |
| 0.8587  | 3300     | 0.1778        | -          | -                                |
| 0.8847  | 3400     | 0.1679        | -          | -                                |
| 0.9107  | 3500     | 0.1685        | -          | -                                |
| 0.9368  | 3600     | 0.165         | -          | -                                |
| 0.9628  | 3700     | 0.1716        | -          | -                                |
| 0.9888  | 3800     | 0.1593        | -          | -                                |
| **1.0** | **3843** | **-**         | **0.9541** | **-**                            |
| 1.0148  | 3900     | 0.1463        | -          | -                                |
| 1.0409  | 4000     | 0.1482        | -          | -                                |
| 1.0669  | 4100     | 0.1446        | -          | -                                |
| 1.0929  | 4200     | 0.1481        | -          | -                                |
| 1.1189  | 4300     | 0.15          | -          | -                                |
| 1.1449  | 4400     | 0.1446        | -          | -                                |
| 1.1710  | 4500     | 0.1414        | -          | -                                |
| 1.1970  | 4600     | 0.1427        | -          | -                                |
| 1.2230  | 4700     | 0.1385        | -          | -                                |
| 1.2490  | 4800     | 0.134         | -          | -                                |
| 1.2750  | 4900     | 0.1343        | -          | -                                |
| 1.3011  | 5000     | 0.1462        | -          | -                                |
| 1.3271  | 5100     | 0.1343        | -          | -                                |
| 1.3531  | 5200     | 0.1324        | -          | -                                |
| 1.3791  | 5300     | 0.125         | -          | -                                |
| 1.4052  | 5400     | 0.1299        | -          | -                                |
| 1.4312  | 5500     | 0.1237        | -          | -                                |
| 1.4572  | 5600     | 0.1349        | -          | -                                |
| 1.4832  | 5700     | 0.1303        | -          | -                                |
| 1.5092  | 5800     | 0.1272        | -          | -                                |
| 1.5353  | 5900     | 0.1238        | -          | -                                |
| 1.5613  | 6000     | 0.1194        | -          | -                                |
| 1.5873  | 6100     | 0.1267        | -          | -                                |
| 1.6133  | 6200     | 0.1187        | -          | -                                |
| 1.6393  | 6300     | 0.123         | -          | -                                |
| 1.6654  | 6400     | 0.1183        | -          | -                                |
| 1.6914  | 6500     | 0.1245        | -          | -                                |
| 1.7174  | 6600     | 0.1173        | -          | -                                |
| 1.7434  | 6700     | 0.1164        | -          | -                                |
| 1.7695  | 6800     | 0.1169        | -          | -                                |
| 1.7955  | 6900     | 0.1181        | -          | -                                |
| 1.8215  | 7000     | 0.1188        | -          | -                                |
| 1.8475  | 7100     | 0.1166        | -          | -                                |
| 1.8735  | 7200     | 0.1144        | -          | -                                |
| 1.8996  | 7300     | 0.1116        | -          | -                                |
| 1.9256  | 7400     | 0.1149        | -          | -                                |
| 1.9516  | 7500     | 0.1137        | -          | -                                |
| 1.9776  | 7600     | 0.1113        | -          | -                                |
| 2.0     | 7686     | -             | 1.0487     | 0.6903                           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.41.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->