File size: 4,952 Bytes
8a89562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
import torch    
import re
import argparse

from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import pipeline, AutoFeatureExtractor, Wav2Vec2ProcessorWithLM, Wav2Vec2Processor
from transformers import Wav2Vec2ForCTC, AutoModelForCTC, AutoProcessor
from typing import Dict


def log_results(result: Dataset, args: Dict[str, str]):

    log_outputs = args.log_outputs
    dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])

    # load metric
    wer = load_metric("wer")
    cer = load_metric("cer")

    # compute metrics
    wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
    cer_result = cer.compute(references=result["target"], predictions=result["prediction"])

    # print & log results
    result_str = (
        f"WER: {wer_result}\n"
        f"CER: {cer_result}"
    )

    with open(f"{dataset_id}_eval_results.txt", "w") as f:
        f.write(result_str)

    if log_outputs is not None:
        pred_file = f"log_{dataset_id}_predictions.txt"
        target_file = f"log_{dataset_id}_targets.txt"

        with open(pred_file, "w") as p, open(target_file, "w") as t:

            # mapping function to write output
            def write_to_file(batch, i):
                p.write(f"{i}" + "\n")
                p.write(batch["prediction"] + "\n")
                t.write(f"{i}" + "\n")
                t.write(batch["target"] + "\n")

            result.map(write_to_file, with_indices=True)


def remove_special_characters(batch):
    chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\&\/\d\_\\\]'
    batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower()
    batch["sentence"] = re.sub('\u200c', '', batch["sentence"])
    batch["sentence"] = re.sub('[a-z]', '', batch["sentence"])
    return batch

def main(args):
    # load dataset
    dataset = load_dataset(args.dataset, args.config)
    train_testvalid = dataset[args.split].train_test_split(test_size=0.25)
    dataset_train = train_testvalid["train"]
    dataset_test = train_testvalid["test"]

    # load processor
    feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
    sampling_rate = feature_extractor.sampling_rate
    print(sampling_rate)
    dataset = dataset_test.map(remove_special_characters)
    # resample audio
    dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))

    processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
    model = Wav2Vec2ForCTC.from_pretrained(args.model_id) 
    # processor = AutoProcessor.from_pretrained(args.model_id)
    # model = AutoModelForCTC.from_pretrained(args.model_id) 
    model.to("cuda")
    # load eval pipeline
    # asr = pipeline("automatic-speech-recognition", model=args.model_id)

    # # map function to decode audio
    # def map_to_pred(batch):
    #     prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)

    #     batch["prediction"] = prediction["text"]
    #     batch["target"] = batch["sentence"]
    #     return batch

    def evaluate(batch):
        inputs = processor(batch["audio"]["array"], return_tensors="pt",sampling_rate=sampling_rate, padding=True)
        with torch.no_grad():
            logits = model(inputs.input_values.to("cuda")).logits
        # pred_ids = torch.argmax(logits, dim=-1)
        # batch["prediction"] = processor.batch_decode(pred_ids)
        batch["prediction"] = processor.batch_decode(logits.cpu().numpy()).text
        batch["target"] =batch["sentence"]

        return batch

    result = dataset.map(evaluate, remove_columns=dataset.column_names)

    log_results(result, args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
    )
    parser.add_argument(
        "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
    )
    parser.add_argument(
        "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice"
    )
    parser.add_argument(
        "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
    )
    parser.add_argument(
        "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
    )
    parser.add_argument(
        "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
    )
    parser.add_argument(
        "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
    )
    args = parser.parse_args()

    main(args)