BARTkrame-abstract / README.md
krm's picture
Update README.md
ed33634
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: BARTkrame-abstract
    results: []
widget:
  - text: >-
      Nous voulons que tous les êtres humains, ensemble ou pris isolément,
      jeunes ou vieux, riches ou pauvres, nobles ou roturiers, hommes ou femmes,
      puissent pleinement s'instruire et devenir des êtres achevés. Nous voulons
      qu'ils soient instruits parfaitement et formés non seulement sur tel ou
      tel point, mais également sur tout ce qui permet à l'homme de réaliser
      intégralement son essence

BARTkrame-abstract

This model is a fine-tuned version of krm/BARTkrame-abstract on the krm/for-ULPGL-Dissertation dataset. It achieves (15/10/2022) the following results on the evaluation set:

  • Loss: 2.4196
  • Rouge1: 0.2703
  • Rouge2: 0.1334
  • Rougel: 0.2392
  • Rougelsum: 0.2419

Model description

This model is primarly a finetuned version of moussaKam/mbarthez.

Intended uses & limitations

More information needed

Training and evaluation data

We have used the krm/for-ULPGL-Dissertation dataset reduced to :

Training data : 5000 samples taken at random with seed=42.

Validation data : 100 samples taken at random with seed=42.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.1316 9.0 1250 2.3251 0.2505 0.1158 0.2150 0.2184
0.0894 10.0 2500 2.3467 0.2526 0.1073 0.2067 0.2124
0.045 11.0 3750 2.3742 0.2593 0.1211 0.2281 0.2308
0.0242 12.0 5000 2.4196 0.2703 0.1334 0.2392 0.2419

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1