File size: 3,839 Bytes
c1a97a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- generated
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-invoice
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: generated
type: generated
config: sroie
split: test
args: sroie
metrics:
- name: Precision
type: precision
value: 0.9979716024340771
- name: Recall
type: recall
value: 0.9979716024340771
- name: F1
type: f1
value: 0.9979716024340771
- name: Accuracy
type: accuracy
value: 0.9997893406361913
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-invoice
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0019
- Precision: 0.9980
- Recall: 0.9980
- F1: 0.9980
- Accuracy: 0.9998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 2.0 | 100 | 0.1069 | 0.946 | 0.9594 | 0.9527 | 0.9943 |
| No log | 4.0 | 200 | 0.0229 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| No log | 6.0 | 300 | 0.0158 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| No log | 8.0 | 400 | 0.0113 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
| 0.1416 | 10.0 | 500 | 0.0103 | 0.9800 | 0.9919 | 0.9859 | 0.9979 |
| 0.1416 | 12.0 | 600 | 0.0047 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
| 0.1416 | 14.0 | 700 | 0.0035 | 0.9939 | 0.9959 | 0.9949 | 0.9994 |
| 0.1416 | 16.0 | 800 | 0.0044 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
| 0.1416 | 18.0 | 900 | 0.0027 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
| 0.0049 | 20.0 | 1000 | 0.0019 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
| 0.0049 | 22.0 | 1100 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0049 | 24.0 | 1200 | 0.0041 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
| 0.0049 | 26.0 | 1300 | 0.0033 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
| 0.0049 | 28.0 | 1400 | 0.0029 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
| 0.0029 | 30.0 | 1500 | 0.0018 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
| 0.0029 | 32.0 | 1600 | 0.0019 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
| 0.0029 | 34.0 | 1700 | 0.0016 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
| 0.0029 | 36.0 | 1800 | 0.0017 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
| 0.0029 | 38.0 | 1900 | 0.0018 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
| 0.0019 | 40.0 | 2000 | 0.0014 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|