ksaml commited on
Commit
7f78fde
·
1 Parent(s): e9afac7

Uploading my first trained model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 289.10 +/- 13.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
Rocket_Model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:634fae14d27eaf8bcda4237a7774e29e7c221fae8119d83cb26da2b9f3b2491f
3
+ size 146579
Rocket_Model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
Rocket_Model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff04dfc39d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff04dfc3a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff04dfc3af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff04dfc3b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff04dfc3c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff04dfc3ca0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff04dfc3d30>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff04dfc3dc0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff04dfc3e50>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff04dfc3ee0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff04dfc3f70>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff04dfbe600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 20004864,
46
+ "_total_timesteps": 20000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670520618148349461,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa0tr2Lu9U9WuvIPt/rCr9UcEy76e2XPgAAAAAAAAAA5iYWPbfYij4Qfea8zqg2v/HN7D2qHQU9AAAAAAAAAADNxCY8tvFvvK03hT3lhU2+LpRRvaPpbr8AAIA/AACAP4C3tD2Bj7Y/o6W4PqB9gL65ujM+tOaTPgAAAAAAAAAAM1NrPEhtmLrVyH+2yf5wsZ9zDjuSdZQ1AACAPwAAgD9NLje9A4x7vDg0pj7kA7C8F0covUClfD0AAIA/AACAP5rtoLt7Jqq63vSds3o0pKypmxC60ua9MwAAgD8AAIA/uusYPkBmgD+8tY4+xUVZvwxmqz5GUrg9AAAAAAAAAAAAO5K8QM+dP97Hxb3wnSq/I+NivZVCcr0AAAAAAAAAALOdKr2kICG5ixbiOj1tgzYyIWQ7AhQHugAAgD8AAIA/c+T7PY1T4T5QBHA8YYs4v47Pgj7kzxi9AAAAAAAAAAAtwRs+LoWJPyhYpz6cyFC/4C2yPjK9Ez4AAAAAAAAAAM00EjwUTMI7fWQGPvqLur5BqNA9SgwCPgAAAAAAAIA/Zh6BvNAWuT+AboG+ifhFPviHqLujO1u9AAAAAAAAAAAz7wk89qRnuk/dn7XtSsqwUiMOuln9rDQAAIA/AACAP01HLb5SdaI/ywfqvuxZIr/xpca+HfGPvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00024320000000011,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3c8pyA/7cECUhpRSlIwBbJRLsYwBdJRHQMTfwTw+dLB1fZQoaAZoCWgPQwgJ4Gbx4styQJSGlFKUaBVLwmgWR0DE38aGN70GdX2UKGgGaAloD0MIe4hGdxDyckCUhpRSlGgVS6JoFkdAxOE4AkLQX3V9lChoBmgJaA9DCAEYz6AhInJAlIaUUpRoFUu3aBZHQMThQrVe8f51fZQoaAZoCWgPQwj8NO7N781xQJSGlFKUaBVLqWgWR0DE4UZ+c6NmdX2UKGgGaAloD0MIpP/lWrQkckCUhpRSlGgVS4FoFkdAxOFVGSZBs3V9lChoBmgJaA9DCFmK5CsBdnFAlIaUUpRoFUuxaBZHQMThWNJnQIF1fZQoaAZoCWgPQwgNx/MZUAJwQJSGlFKUaBVLnGgWR0DE4VvO6d1/dX2UKGgGaAloD0MIUUzeADPXQ0CUhpRSlGgVS25oFkdAxOFbZHuqm3V9lChoBmgJaA9DCO0L6IW70HJAlIaUUpRoFUuraBZHQMThaw3HaOB1fZQoaAZoCWgPQwhDxw4qsQByQJSGlFKUaBVLq2gWR0DE4WwxcmjTdX2UKGgGaAloD0MIrORjdwF4ckCUhpRSlGgVS75oFkdAxOF5PSlWO3V9lChoBmgJaA9DCLGKNzLPtHFAlIaUUpRoFUufaBZHQMThfGaH9FZ1fZQoaAZoCWgPQwiV7xmJUBxvQJSGlFKUaBVLnmgWR0DE4YAC6pYLdX2UKGgGaAloD0MI3EduTfp/ckCUhpRSlGgVS7doFkdAxOGBKvmoznV9lChoBmgJaA9DCPQ1y2VjO3JAlIaUUpRoFUu8aBZHQMThjtkFwDN1fZQoaAZoCWgPQwgyrrg46vdzQJSGlFKUaBVLu2gWR0DE4ZxsTFl1dX2UKGgGaAloD0MIcD/ggcF0ckCUhpRSlGgVS7BoFkdAxOGcXP7emHV9lChoBmgJaA9DCOhOsP+6ZHNAlIaUUpRoFUunaBZHQMThpFWfbsZ1fZQoaAZoCWgPQwglzR/TGltyQJSGlFKUaBVLj2gWR0DE4aZ1aGHpdX2UKGgGaAloD0MIYp0q37ORc0CUhpRSlGgVS8ZoFkdAxOGmttALRnV9lChoBmgJaA9DCBQJpprZlXNAlIaUUpRoFUvFaBZHQMThsKohpxp1fZQoaAZoCWgPQwjdJ0cBYpFyQJSGlFKUaBVLp2gWR0DE4bnKdQO4dX2UKGgGaAloD0MIpwTEJFwKckCUhpRSlGgVS5JoFkdAxOG9y/9Hc3V9lChoBmgJaA9DCBCVRszsYnFAlIaUUpRoFUu0aBZHQMThvo3irDJ1fZQoaAZoCWgPQwjF/rJ78r9zQJSGlFKUaBVLuGgWR0DE4cNVinYQdX2UKGgGaAloD0MILUFGQEVBdECUhpRSlGgVS69oFkdAxOHNpjc2znV9lChoBmgJaA9DCJaWkXqP43FAlIaUUpRoFUuVaBZHQMTh0y00FbF1fZQoaAZoCWgPQwiASSpTDH5yQJSGlFKUaBVLoGgWR0DE4dguM+/ydX2UKGgGaAloD0MIdArys5EKdECUhpRSlGgVS6xoFkdAxOHbTFVDKHV9lChoBmgJaA9DCG1VEtkHeHNAlIaUUpRoFUu0aBZHQMTh3LNOdoZ1fZQoaAZoCWgPQwgpPj4hexJxQJSGlFKUaBVLnWgWR0DE4eSElE7XdX2UKGgGaAloD0MIZof4h61rb0CUhpRSlGgVS5xoFkdAxOHwXm/34HV9lChoBmgJaA9DCMms3uF2TnJAlIaUUpRoFUuGaBZHQMTh7glnh891fZQoaAZoCWgPQwh1AS8zrBJyQJSGlFKUaBVLsmgWR0DE4fv7N0NjdX2UKGgGaAloD0MITwRxHs6qc0CUhpRSlGgVS7doFkdAxOIGxqwhXHV9lChoBmgJaA9DCEOM17zqnnNAlIaUUpRoFUu3aBZHQMTiCT0pVjt1fZQoaAZoCWgPQwj7Wpca4TBxQJSGlFKUaBVLj2gWR0DE4hBJCjUNdX2UKGgGaAloD0MIyv0ORcG6cECUhpRSlGgVS55oFkdAxOIO3VCoj3V9lChoBmgJaA9DCKcf1EUK9nJAlIaUUpRoFUueaBZHQMTiEutwJgN1fZQoaAZoCWgPQwgvNUI/U1tyQJSGlFKUaBVLvmgWR0DE4heb1AZ9dX2UKGgGaAloD0MI106UhARWc0CUhpRSlGgVS8ZoFkdAxOIoQUYbbXV9lChoBmgJaA9DCAivXdqwt3FAlIaUUpRoFUucaBZHQMTiJxBVuJl1fZQoaAZoCWgPQwjtYprpnqJwQJSGlFKUaBVLqGgWR0DE4jUz9CNTdX2UKGgGaAloD0MIvK302mzzcUCUhpRSlGgVS5toFkdAxOI4gIQe3nV9lChoBmgJaA9DCH2vITjua3RAlIaUUpRoFUvFaBZHQMTiOFzuF6B1fZQoaAZoCWgPQwjjwRa7vYdxQJSGlFKUaBVLqWgWR0DE4jhUT+NtdX2UKGgGaAloD0MIYAMixJXNckCUhpRSlGgVS5RoFkdAxOJBUVBUrHV9lChoBmgJaA9DCAO0rWbdHHNAlIaUUpRoFUvCaBZHQMTiQWuX/o91fZQoaAZoCWgPQwj6Yu/FV3ZxQJSGlFKUaBVLo2gWR0DE4kZmoR7JdX2UKGgGaAloD0MIn67uWCzqckCUhpRSlGgVS7BoFkdAxOJaSTyJ9HV9lChoBmgJaA9DCIBjz57LtnNAlIaUUpRoFUugaBZHQMTiXkC3gDR1fZQoaAZoCWgPQwjXaDnQA1ZwQJSGlFKUaBVLnmgWR0DE4mLH+6y0dX2UKGgGaAloD0MI8WPMXUvGckCUhpRSlGgVS7poFkdAxOJqXb/OuHV9lChoBmgJaA9DCGaiCKkb3nJAlIaUUpRoFUusaBZHQMTia9rwe/51fZQoaAZoCWgPQwiXOV0Wk+9wQJSGlFKUaBVLoGgWR0DE4myZH/cWdX2UKGgGaAloD0MIQdgpVo2LckCUhpRSlGgVS4xoFkdAxOJy8La24XV9lChoBmgJaA9DCGn/A6yVPXJAlIaUUpRoFUu5aBZHQMTidN/FzdV1fZQoaAZoCWgPQwgrNBDLJqNxQJSGlFKUaBVLl2gWR0DE4ncv7FbWdX2UKGgGaAloD0MIc7wC0VNbcECUhpRSlGgVS5loFkdAxOKF4Oc2BXV9lChoBmgJaA9DCIWUn1T7+3BAlIaUUpRoFUuOaBZHQMTiiwgs9Sx1fZQoaAZoCWgPQwieCrjnuddxQJSGlFKUaBVLomgWR0DE4o0S00FbdX2UKGgGaAloD0MIkBX8NkRFb0CUhpRSlGgVS6ZoFkdAxOKPsXzlLnV9lChoBmgJaA9DCJvlstE5InRAlIaUUpRoFUu4aBZHQMTimRzzVc51fZQoaAZoCWgPQwhs0QK0LeNyQJSGlFKUaBVLvGgWR0DE4qQjv/ipdX2UKGgGaAloD0MIMuTYesb1ckCUhpRSlGgVS49oFkdAxOKqVclgMXV9lChoBmgJaA9DCO3w12TNq3BAlIaUUpRoFUuIaBZHQMTisqMFUyZ1fZQoaAZoCWgPQwhMcOoDyXVzQJSGlFKUaBVLmGgWR0DE4rPOfNA1dX2UKGgGaAloD0MIX9Gt17RfdECUhpRSlGgVS9FoFkdAxOK1eNT99HV9lChoBmgJaA9DCAbZsnydl3JAlIaUUpRoFUu5aBZHQMTivjYqXnh1fZQoaAZoCWgPQwh8urpjsUlzQJSGlFKUaBVLm2gWR0DE4r8yk9EDdX2UKGgGaAloD0MIc2N6wpJOcECUhpRSlGgVS59oFkdAxOLHlp48l3V9lChoBmgJaA9DCMfXnlnS23JAlIaUUpRoFUupaBZHQMTixlMyrPt1fZQoaAZoCWgPQwjaO6OtioZyQJSGlFKUaBVLl2gWR0DE4sf3nIQwdX2UKGgGaAloD0MIIJbNHJJUcUCUhpRSlGgVS7BoFkdAxOLRx6v7nHV9lChoBmgJaA9DCCiBzTn4iXJAlIaUUpRoFUuVaBZHQMTi3A+Y+jd1fZQoaAZoCWgPQwhb6bXZ2EtzQJSGlFKUaBVLuWgWR0DE4umfNA1OdX2UKGgGaAloD0MIG0esxWcGckCUhpRSlGgVS6xoFkdAxOLsHWz4UXV9lChoBmgJaA9DCOQQcXPqC3RAlIaUUpRoFUueaBZHQMTi7hddE9d1fZQoaAZoCWgPQwi5/fLJyrhzQJSGlFKUaBVLvmgWR0DE4vFd/rjYdX2UKGgGaAloD0MIcw8J3/uUcECUhpRSlGgVS6NoFkdAxOL6xcE/0XV9lChoBmgJaA9DCLmMmxroKW9AlIaUUpRoFUuRaBZHQMTi/zRQaaV1fZQoaAZoCWgPQwjb/SrAt3lxQJSGlFKUaBVLfWgWR0DE4v84JeE7dX2UKGgGaAloD0MIcAorFdT3bkCUhpRSlGgVS45oFkdAxOL+iJO32HV9lChoBmgJaA9DCGUBE7i1ynFAlIaUUpRoFUuyaBZHQMTjCCi7Ci11fZQoaAZoCWgPQwhQ4nMnWDVyQJSGlFKUaBVLoGgWR0DE4wkhRqGldX2UKGgGaAloD0MImzdOCvNAS0CUhpRSlGgVS2poFkdAxOMTWYnfEXV9lChoBmgJaA9DCGoX00y3nnJAlIaUUpRoFUuwaBZHQMTjGZgw4851fZQoaAZoCWgPQwj8brplR1pyQJSGlFKUaBVLomgWR0DE4xurjo6kdX2UKGgGaAloD0MIE/OspBXTckCUhpRSlGgVS6ZoFkdAxOMn0mtyP3V9lChoBmgJaA9DCIPab+0El3NAlIaUUpRoFUu4aBZHQMTjJS4nWrh1fZQoaAZoCWgPQwjKxRhYh71zQJSGlFKUaBVLxWgWR0DE4y0Mb3oLdX2UKGgGaAloD0MIflLt0zGycUCUhpRSlGgVS4hoFkdAxONAWjXWfHV9lChoBmgJaA9DCKYnLPFANHJAlIaUUpRoFUukaBZHQMTjPdYfW+Z1fZQoaAZoCWgPQwgkC5jAbdZyQJSGlFKUaBVLq2gWR0DE40Vu3trsdX2UKGgGaAloD0MI7IfYYOGmc0CUhpRSlGgVS7BoFkdAxONGR9w3pHV9lChoBmgJaA9DCOI+cmuSvnBAlIaUUpRoFUuRaBZHQMTjSO2iL2p1fZQoaAZoCWgPQwjXv+szJwVwQJSGlFKUaBVLo2gWR0DE41Lfk3judX2UKGgGaAloD0MIqwmi7gMhckCUhpRSlGgVS75oFkdAxONSfzz3AXV9lChoBmgJaA9DCCOhLecS7nFAlIaUUpRoFUucaBZHQMTjWBJ7LMd1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4884,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Rocket_Model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d232fa560983193ce7f30f4cc841a7dcc9f552a08dd544131f381a44d382065
3
+ size 87545
Rocket_Model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20f578f5a0d649b375f5c486c9a032994897d1ecc2f739e228a6eb13cca0eb28
3
+ size 43073
Rocket_Model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Rocket_Model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff04dfc39d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff04dfc3a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff04dfc3af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff04dfc3b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff04dfc3c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff04dfc3ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff04dfc3d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff04dfc3dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff04dfc3e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff04dfc3ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff04dfc3f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff04dfbe600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 20004864, "_total_timesteps": 20000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670520618148349461, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa0tr2Lu9U9WuvIPt/rCr9UcEy76e2XPgAAAAAAAAAA5iYWPbfYij4Qfea8zqg2v/HN7D2qHQU9AAAAAAAAAADNxCY8tvFvvK03hT3lhU2+LpRRvaPpbr8AAIA/AACAP4C3tD2Bj7Y/o6W4PqB9gL65ujM+tOaTPgAAAAAAAAAAM1NrPEhtmLrVyH+2yf5wsZ9zDjuSdZQ1AACAPwAAgD9NLje9A4x7vDg0pj7kA7C8F0covUClfD0AAIA/AACAP5rtoLt7Jqq63vSds3o0pKypmxC60ua9MwAAgD8AAIA/uusYPkBmgD+8tY4+xUVZvwxmqz5GUrg9AAAAAAAAAAAAO5K8QM+dP97Hxb3wnSq/I+NivZVCcr0AAAAAAAAAALOdKr2kICG5ixbiOj1tgzYyIWQ7AhQHugAAgD8AAIA/c+T7PY1T4T5QBHA8YYs4v47Pgj7kzxi9AAAAAAAAAAAtwRs+LoWJPyhYpz6cyFC/4C2yPjK9Ez4AAAAAAAAAAM00EjwUTMI7fWQGPvqLur5BqNA9SgwCPgAAAAAAAIA/Zh6BvNAWuT+AboG+ifhFPviHqLujO1u9AAAAAAAAAAAz7wk89qRnuk/dn7XtSsqwUiMOuln9rDQAAIA/AACAP01HLb5SdaI/ywfqvuxZIr/xpca+HfGPvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3c8pyA/7cECUhpRSlIwBbJRLsYwBdJRHQMTfwTw+dLB1fZQoaAZoCWgPQwgJ4Gbx4styQJSGlFKUaBVLwmgWR0DE38aGN70GdX2UKGgGaAloD0MIe4hGdxDyckCUhpRSlGgVS6JoFkdAxOE4AkLQX3V9lChoBmgJaA9DCAEYz6AhInJAlIaUUpRoFUu3aBZHQMThQrVe8f51fZQoaAZoCWgPQwj8NO7N781xQJSGlFKUaBVLqWgWR0DE4UZ+c6NmdX2UKGgGaAloD0MIpP/lWrQkckCUhpRSlGgVS4FoFkdAxOFVGSZBs3V9lChoBmgJaA9DCFmK5CsBdnFAlIaUUpRoFUuxaBZHQMThWNJnQIF1fZQoaAZoCWgPQwgNx/MZUAJwQJSGlFKUaBVLnGgWR0DE4VvO6d1/dX2UKGgGaAloD0MIUUzeADPXQ0CUhpRSlGgVS25oFkdAxOFbZHuqm3V9lChoBmgJaA9DCO0L6IW70HJAlIaUUpRoFUuraBZHQMThaw3HaOB1fZQoaAZoCWgPQwhDxw4qsQByQJSGlFKUaBVLq2gWR0DE4WwxcmjTdX2UKGgGaAloD0MIrORjdwF4ckCUhpRSlGgVS75oFkdAxOF5PSlWO3V9lChoBmgJaA9DCLGKNzLPtHFAlIaUUpRoFUufaBZHQMThfGaH9FZ1fZQoaAZoCWgPQwiV7xmJUBxvQJSGlFKUaBVLnmgWR0DE4YAC6pYLdX2UKGgGaAloD0MI3EduTfp/ckCUhpRSlGgVS7doFkdAxOGBKvmoznV9lChoBmgJaA9DCPQ1y2VjO3JAlIaUUpRoFUu8aBZHQMThjtkFwDN1fZQoaAZoCWgPQwgyrrg46vdzQJSGlFKUaBVLu2gWR0DE4ZxsTFl1dX2UKGgGaAloD0MIcD/ggcF0ckCUhpRSlGgVS7BoFkdAxOGcXP7emHV9lChoBmgJaA9DCOhOsP+6ZHNAlIaUUpRoFUunaBZHQMThpFWfbsZ1fZQoaAZoCWgPQwglzR/TGltyQJSGlFKUaBVLj2gWR0DE4aZ1aGHpdX2UKGgGaAloD0MIYp0q37ORc0CUhpRSlGgVS8ZoFkdAxOGmttALRnV9lChoBmgJaA9DCBQJpprZlXNAlIaUUpRoFUvFaBZHQMThsKohpxp1fZQoaAZoCWgPQwjdJ0cBYpFyQJSGlFKUaBVLp2gWR0DE4bnKdQO4dX2UKGgGaAloD0MIpwTEJFwKckCUhpRSlGgVS5JoFkdAxOG9y/9Hc3V9lChoBmgJaA9DCBCVRszsYnFAlIaUUpRoFUu0aBZHQMThvo3irDJ1fZQoaAZoCWgPQwjF/rJ78r9zQJSGlFKUaBVLuGgWR0DE4cNVinYQdX2UKGgGaAloD0MILUFGQEVBdECUhpRSlGgVS69oFkdAxOHNpjc2znV9lChoBmgJaA9DCJaWkXqP43FAlIaUUpRoFUuVaBZHQMTh0y00FbF1fZQoaAZoCWgPQwiASSpTDH5yQJSGlFKUaBVLoGgWR0DE4dguM+/ydX2UKGgGaAloD0MIdArys5EKdECUhpRSlGgVS6xoFkdAxOHbTFVDKHV9lChoBmgJaA9DCG1VEtkHeHNAlIaUUpRoFUu0aBZHQMTh3LNOdoZ1fZQoaAZoCWgPQwgpPj4hexJxQJSGlFKUaBVLnWgWR0DE4eSElE7XdX2UKGgGaAloD0MIZof4h61rb0CUhpRSlGgVS5xoFkdAxOHwXm/34HV9lChoBmgJaA9DCMms3uF2TnJAlIaUUpRoFUuGaBZHQMTh7glnh891fZQoaAZoCWgPQwh1AS8zrBJyQJSGlFKUaBVLsmgWR0DE4fv7N0NjdX2UKGgGaAloD0MITwRxHs6qc0CUhpRSlGgVS7doFkdAxOIGxqwhXHV9lChoBmgJaA9DCEOM17zqnnNAlIaUUpRoFUu3aBZHQMTiCT0pVjt1fZQoaAZoCWgPQwj7Wpca4TBxQJSGlFKUaBVLj2gWR0DE4hBJCjUNdX2UKGgGaAloD0MIyv0ORcG6cECUhpRSlGgVS55oFkdAxOIO3VCoj3V9lChoBmgJaA9DCKcf1EUK9nJAlIaUUpRoFUueaBZHQMTiEutwJgN1fZQoaAZoCWgPQwgvNUI/U1tyQJSGlFKUaBVLvmgWR0DE4heb1AZ9dX2UKGgGaAloD0MI106UhARWc0CUhpRSlGgVS8ZoFkdAxOIoQUYbbXV9lChoBmgJaA9DCAivXdqwt3FAlIaUUpRoFUucaBZHQMTiJxBVuJl1fZQoaAZoCWgPQwjtYprpnqJwQJSGlFKUaBVLqGgWR0DE4jUz9CNTdX2UKGgGaAloD0MIvK302mzzcUCUhpRSlGgVS5toFkdAxOI4gIQe3nV9lChoBmgJaA9DCH2vITjua3RAlIaUUpRoFUvFaBZHQMTiOFzuF6B1fZQoaAZoCWgPQwjjwRa7vYdxQJSGlFKUaBVLqWgWR0DE4jhUT+NtdX2UKGgGaAloD0MIYAMixJXNckCUhpRSlGgVS5RoFkdAxOJBUVBUrHV9lChoBmgJaA9DCAO0rWbdHHNAlIaUUpRoFUvCaBZHQMTiQWuX/o91fZQoaAZoCWgPQwj6Yu/FV3ZxQJSGlFKUaBVLo2gWR0DE4kZmoR7JdX2UKGgGaAloD0MIn67uWCzqckCUhpRSlGgVS7BoFkdAxOJaSTyJ9HV9lChoBmgJaA9DCIBjz57LtnNAlIaUUpRoFUugaBZHQMTiXkC3gDR1fZQoaAZoCWgPQwjXaDnQA1ZwQJSGlFKUaBVLnmgWR0DE4mLH+6y0dX2UKGgGaAloD0MI8WPMXUvGckCUhpRSlGgVS7poFkdAxOJqXb/OuHV9lChoBmgJaA9DCGaiCKkb3nJAlIaUUpRoFUusaBZHQMTia9rwe/51fZQoaAZoCWgPQwiXOV0Wk+9wQJSGlFKUaBVLoGgWR0DE4myZH/cWdX2UKGgGaAloD0MIQdgpVo2LckCUhpRSlGgVS4xoFkdAxOJy8La24XV9lChoBmgJaA9DCGn/A6yVPXJAlIaUUpRoFUu5aBZHQMTidN/FzdV1fZQoaAZoCWgPQwgrNBDLJqNxQJSGlFKUaBVLl2gWR0DE4ncv7FbWdX2UKGgGaAloD0MIc7wC0VNbcECUhpRSlGgVS5loFkdAxOKF4Oc2BXV9lChoBmgJaA9DCIWUn1T7+3BAlIaUUpRoFUuOaBZHQMTiiwgs9Sx1fZQoaAZoCWgPQwieCrjnuddxQJSGlFKUaBVLomgWR0DE4o0S00FbdX2UKGgGaAloD0MIkBX8NkRFb0CUhpRSlGgVS6ZoFkdAxOKPsXzlLnV9lChoBmgJaA9DCJvlstE5InRAlIaUUpRoFUu4aBZHQMTimRzzVc51fZQoaAZoCWgPQwhs0QK0LeNyQJSGlFKUaBVLvGgWR0DE4qQjv/ipdX2UKGgGaAloD0MIMuTYesb1ckCUhpRSlGgVS49oFkdAxOKqVclgMXV9lChoBmgJaA9DCO3w12TNq3BAlIaUUpRoFUuIaBZHQMTisqMFUyZ1fZQoaAZoCWgPQwhMcOoDyXVzQJSGlFKUaBVLmGgWR0DE4rPOfNA1dX2UKGgGaAloD0MIX9Gt17RfdECUhpRSlGgVS9FoFkdAxOK1eNT99HV9lChoBmgJaA9DCAbZsnydl3JAlIaUUpRoFUu5aBZHQMTivjYqXnh1fZQoaAZoCWgPQwh8urpjsUlzQJSGlFKUaBVLm2gWR0DE4r8yk9EDdX2UKGgGaAloD0MIc2N6wpJOcECUhpRSlGgVS59oFkdAxOLHlp48l3V9lChoBmgJaA9DCMfXnlnS23JAlIaUUpRoFUupaBZHQMTixlMyrPt1fZQoaAZoCWgPQwjaO6OtioZyQJSGlFKUaBVLl2gWR0DE4sf3nIQwdX2UKGgGaAloD0MIIJbNHJJUcUCUhpRSlGgVS7BoFkdAxOLRx6v7nHV9lChoBmgJaA9DCCiBzTn4iXJAlIaUUpRoFUuVaBZHQMTi3A+Y+jd1fZQoaAZoCWgPQwhb6bXZ2EtzQJSGlFKUaBVLuWgWR0DE4umfNA1OdX2UKGgGaAloD0MIG0esxWcGckCUhpRSlGgVS6xoFkdAxOLsHWz4UXV9lChoBmgJaA9DCOQQcXPqC3RAlIaUUpRoFUueaBZHQMTi7hddE9d1fZQoaAZoCWgPQwi5/fLJyrhzQJSGlFKUaBVLvmgWR0DE4vFd/rjYdX2UKGgGaAloD0MIcw8J3/uUcECUhpRSlGgVS6NoFkdAxOL6xcE/0XV9lChoBmgJaA9DCLmMmxroKW9AlIaUUpRoFUuRaBZHQMTi/zRQaaV1fZQoaAZoCWgPQwjb/SrAt3lxQJSGlFKUaBVLfWgWR0DE4v84JeE7dX2UKGgGaAloD0MIcAorFdT3bkCUhpRSlGgVS45oFkdAxOL+iJO32HV9lChoBmgJaA9DCGUBE7i1ynFAlIaUUpRoFUuyaBZHQMTjCCi7Ci11fZQoaAZoCWgPQwhQ4nMnWDVyQJSGlFKUaBVLoGgWR0DE4wkhRqGldX2UKGgGaAloD0MImzdOCvNAS0CUhpRSlGgVS2poFkdAxOMTWYnfEXV9lChoBmgJaA9DCGoX00y3nnJAlIaUUpRoFUuwaBZHQMTjGZgw4851fZQoaAZoCWgPQwj8brplR1pyQJSGlFKUaBVLomgWR0DE4xurjo6kdX2UKGgGaAloD0MIE/OspBXTckCUhpRSlGgVS6ZoFkdAxOMn0mtyP3V9lChoBmgJaA9DCIPab+0El3NAlIaUUpRoFUu4aBZHQMTjJS4nWrh1fZQoaAZoCWgPQwjKxRhYh71zQJSGlFKUaBVLxWgWR0DE4y0Mb3oLdX2UKGgGaAloD0MIflLt0zGycUCUhpRSlGgVS4hoFkdAxONAWjXWfHV9lChoBmgJaA9DCKYnLPFANHJAlIaUUpRoFUukaBZHQMTjPdYfW+Z1fZQoaAZoCWgPQwgkC5jAbdZyQJSGlFKUaBVLq2gWR0DE40Vu3trsdX2UKGgGaAloD0MI7IfYYOGmc0CUhpRSlGgVS7BoFkdAxONGR9w3pHV9lChoBmgJaA9DCOI+cmuSvnBAlIaUUpRoFUuRaBZHQMTjSO2iL2p1fZQoaAZoCWgPQwjXv+szJwVwQJSGlFKUaBVLo2gWR0DE41Lfk3judX2UKGgGaAloD0MIqwmi7gMhckCUhpRSlGgVS75oFkdAxONSfzz3AXV9lChoBmgJaA9DCCOhLecS7nFAlIaUUpRoFUucaBZHQMTjWBJ7LMd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4884, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 289.10406596423144, "std_reward": 13.754326770843072, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T20:49:36.820328"}