kubernetes-bad
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- microsoft/deberta-v3-base
|
7 |
+
---
|
8 |
+
# Slop Classifier for Roleplay Characters
|
9 |
+
|
10 |
+
> This model can detect characters that are created using AI.
|
11 |
+
|
12 |
+
Part of [CharGen](https://huggingface.co/kubernetes-bad/chargen-v2) project - it is used to detect and filter out low-effort, LLM-made characters intended for role playing.
|
13 |
+
|
14 |
+
*Slop* refers to over-used phrases that models like GPT3.5 like to use very much and that do not add any value to the text. "Shivers down her spine", "enigma wrapped in mystery", "half-lidded eyes", etc. Classifier is trained on set of synthetic characters generated with GPT3.5 and GPT4, and a substet of CharGen dataset.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
```py
|
19 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
20 |
+
import torch
|
21 |
+
from litserve import LitAPI, LitServer
|
22 |
+
|
23 |
+
MODEL_NAME = "kubernetes-bad/character-slop-classifier"
|
24 |
+
|
25 |
+
class CHARLitAPI(LitAPI):
|
26 |
+
def setup(self, device):
|
27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
28 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
29 |
+
self.model.to(device)
|
30 |
+
self.model.eval()
|
31 |
+
|
32 |
+
def decode_request(self, request):
|
33 |
+
if "text" in request:
|
34 |
+
inputs = self.tokenizer(request["text"], return_tensors="pt", padding=True, truncation=True, max_length=512)
|
35 |
+
elif "texts" in request:
|
36 |
+
inputs = self.tokenizer(request["texts"], return_tensors="pt", padding=True, truncation=True, max_length=512)
|
37 |
+
else:
|
38 |
+
raise ValueError("Invalid request format. Expected 'text' or 'texts' field.")
|
39 |
+
return inputs
|
40 |
+
|
41 |
+
def predict(self, inputs):
|
42 |
+
with torch.no_grad():
|
43 |
+
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
|
44 |
+
outputs = self.model(**inputs)
|
45 |
+
return outputs.logits
|
46 |
+
|
47 |
+
def encode_response(self, logits):
|
48 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
49 |
+
if probabilities.shape[0] == 1:
|
50 |
+
response = {
|
51 |
+
"positive": probabilities[:, 1].item(),
|
52 |
+
"negative": probabilities[:, 0].item()
|
53 |
+
}
|
54 |
+
else:
|
55 |
+
response = [
|
56 |
+
{
|
57 |
+
"positive": prob[1].item(),
|
58 |
+
"negative": prob[0].item()
|
59 |
+
}
|
60 |
+
for prob in probabilities
|
61 |
+
]
|
62 |
+
return response
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
api = CHARLitAPI()
|
67 |
+
server = LitServer(api, accelerator='cuda')
|
68 |
+
server.run(port=9000)
|
69 |
+
```
|
70 |
+
|
71 |
+
```bash
|
72 |
+
curl --location 'http://localhost:9000/predict' \
|
73 |
+
--header 'Content-Type: application/json' \
|
74 |
+
--data '{
|
75 |
+
"text": "Hermione, the seductive intellectual enchantress, is the secret sin of Hogwarts. Beneath her seemingly innocent scholarly facade lies a tantalizing world of forbidden desires. In the hallowed halls of the wizarding world, she conceals her lewd nature from her peers, maintaining a pristine reputation as the most brilliant witch of her age."
|
76 |
+
}'
|
77 |
+
```
|
78 |
+
Example response:
|
79 |
+
```json
|
80 |
+
{
|
81 |
+
"positive": 0.9975564479827881,
|
82 |
+
"negative": 0.0024435613304376602
|
83 |
+
}
|
84 |
+
```
|