update model card README.md
Browse files
README.md
CHANGED
@@ -1,48 +1,66 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
|
4 |
-
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
- text: あの人は殺人を犯した犯罪者らしい
|
12 |
---
|
13 |
|
|
|
|
|
|
|
14 |
# luke-large-defamation-detection-japanese
|
15 |
-
# 日本語誹謗中傷検出器
|
16 |
|
17 |
-
This model is a fine-tuned version of [studio-ousia/luke-japanese-large](https://huggingface.co/studio-ousia/luke-japanese-large)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
- [![Generic badge](https://img.shields.io/badge/Dataset-DefamationJapaneseTwitter-red.svg)](https://huggingface.co/datasets/kubota/defamation-japanese-twitter)
|
21 |
-
- `DefamationJapaneseYouTube` : TBA
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kubotaissei/defamation_japanese_twitter/blob/master/notebooks/pipeline_example.ipynb)
|
31 |
-
```python
|
32 |
-
# !pip install transformers==4.26 sentencepiece
|
33 |
-
from transformers import pipeline
|
34 |
-
pipe = pipeline(model="kubota/luke-large-defamation-detection-japanese")
|
35 |
-
pipe("あの人は殺人を犯した犯罪者らしい")
|
36 |
-
```
|
37 |
-
```
|
38 |
-
[{'label': '名誉を低下させる発言', 'score': 0.8889994621276855}]
|
39 |
-
```
|
40 |
-
## Training Scripts
|
41 |
-
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/kubotaissei/defamation_japanese_twitter/blob/master/notebooks/train_example.ipynb)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
## Licenses
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
model-index:
|
9 |
+
- name: luke-large-defamation-detection-japanese
|
10 |
+
results: []
|
|
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
# luke-large-defamation-detection-japanese
|
|
|
17 |
|
18 |
+
This model is a fine-tuned version of [studio-ousia/luke-japanese-large](https://huggingface.co/studio-ousia/luke-japanese-large) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4430
|
21 |
+
- Accuracy: 0.6616
|
22 |
+
- F1: 0.6381
|
23 |
+
- Auc: 0.8630
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
|
39 |
+
### Training hyperparameters
|
|
|
|
|
40 |
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-05
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 777
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- num_epochs: 4
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
|
51 |
+
### Training results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Auc |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
|
55 |
+
| 0.4219 | 1.0 | 1780 | 0.3979 | 0.6630 | 0.6084 | 0.8466 |
|
56 |
+
| 0.3375 | 2.0 | 3560 | 0.4050 | 0.6706 | 0.6242 | 0.8618 |
|
57 |
+
| 0.2716 | 3.0 | 5340 | 0.4362 | 0.6595 | 0.6370 | 0.8626 |
|
58 |
+
| 0.2331 | 4.0 | 7120 | 0.4430 | 0.6616 | 0.6381 | 0.8630 |
|
59 |
|
|
|
60 |
|
61 |
+
### Framework versions
|
62 |
|
63 |
+
- Transformers 4.26.0
|
64 |
+
- Pytorch 1.13.1+cu116
|
65 |
+
- Datasets 2.8.0
|
66 |
+
- Tokenizers 0.13.2
|