#!/usr/bin/env bash export PYTHONPATH="" source /esat/spchtemp/scratch/jponcele/anaconda3/bin/activate whisper python --version #--dataset_config_name="nl" \ #--language="dutch" \ python run_speech_recognition_seq2seq_streaming.py \ --model_name_or_path="openai/whisper-large-v2" \ --dataset_name="kul-speech-lab/CGN" \ --train_split_name="train+validation" \ --eval_split_name="test" \ --language="dutch" \ --task="transcribe" \ --model_index_name="Whisper Large (v2) CGN" \ --max_steps="15000" \ --output_dir="/esat/audioslave/jponcele/whisper/finetuning_event/CGN/large" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="16" \ --gradient_accumulation_steps="2" \ --logging_steps="100" \ --learning_rate="1e-5" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="225" \ --length_column_name="input_length" \ --max_duration_in_seconds="30" \ --text_column_name="transcription" \ --freeze_feature_encoder="False" \ --report_to="tensorboard" \ --metric_for_best_model="wer" \ --greater_is_better="False" \ --load_best_model_at_end \ --gradient_checkpointing \ --fp16 \ --do_train \ --do_eval \ --predict_with_generate \ --do_normalize_eval \ --streaming \ --use_auth_token # --overwrite_output_dir # --push_to_hub