yairschiff
commited on
Commit
•
6a5edc5
1
Parent(s):
ebaf2b1
Upload CaduceusForMaskedLM
Browse files- config.json +63 -0
- configuration_caduceus.py +55 -0
- model.safetensors +3 -0
- modeling_caduceus.py +615 -0
- modeling_rcps.py +243 -0
config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CaduceusForMaskedLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_caduceus.CaduceusConfig",
|
7 |
+
"AutoModel": "modeling_caduceus.Caduceus",
|
8 |
+
"AutoModelForMaskedLM": "modeling_caduceus.CaduceusForMaskedLM",
|
9 |
+
"AutoModelForSequenceClassification": "modeling_caduceus.CaduceusForSequenceClassification"
|
10 |
+
},
|
11 |
+
"bidirectional": true,
|
12 |
+
"bidirectional_strategy": "add",
|
13 |
+
"bidirectional_weight_tie": true,
|
14 |
+
"complement_map": {
|
15 |
+
"0": 0,
|
16 |
+
"1": 1,
|
17 |
+
"2": 2,
|
18 |
+
"3": 3,
|
19 |
+
"4": 4,
|
20 |
+
"5": 5,
|
21 |
+
"6": 6,
|
22 |
+
"7": 10,
|
23 |
+
"8": 9,
|
24 |
+
"9": 8,
|
25 |
+
"10": 7,
|
26 |
+
"11": 11,
|
27 |
+
"12": 12,
|
28 |
+
"13": 13,
|
29 |
+
"14": 14,
|
30 |
+
"15": 15
|
31 |
+
},
|
32 |
+
"d_model": 256,
|
33 |
+
"fused_add_norm": true,
|
34 |
+
"initializer_cfg": {
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"n_residuals_per_layer": 1,
|
37 |
+
"rescale_prenorm_residual": true
|
38 |
+
},
|
39 |
+
"model_type": "caduceus",
|
40 |
+
"n_layer": 4,
|
41 |
+
"norm_epsilon": 1e-05,
|
42 |
+
"pad_vocab_size_multiple": 8,
|
43 |
+
"rcps": true,
|
44 |
+
"residual_in_fp32": false,
|
45 |
+
"rms_norm": true,
|
46 |
+
"ssm_cfg": {
|
47 |
+
"bias": false,
|
48 |
+
"conv_bias": true,
|
49 |
+
"d_conv": 4,
|
50 |
+
"d_state": 16,
|
51 |
+
"dt_init": "random",
|
52 |
+
"dt_init_floor": 0.0001,
|
53 |
+
"dt_max": 0.1,
|
54 |
+
"dt_min": 0.001,
|
55 |
+
"dt_rank": "auto",
|
56 |
+
"dt_scale": 1.0,
|
57 |
+
"expand": 2,
|
58 |
+
"use_fast_path": true
|
59 |
+
},
|
60 |
+
"torch_dtype": "float32",
|
61 |
+
"transformers_version": "4.38.1",
|
62 |
+
"vocab_size": 16
|
63 |
+
}
|
configuration_caduceus.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Caduceus config for Hugging Face.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
from typing import Optional, Union
|
6 |
+
|
7 |
+
from transformers import PretrainedConfig
|
8 |
+
|
9 |
+
|
10 |
+
class CaduceusConfig(PretrainedConfig):
|
11 |
+
"""Config that extends the original MambaConfig with params relevant to bi-directionality and RC equivariance."""
|
12 |
+
model_type = "caduceus"
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
# From original MambaConfig
|
17 |
+
d_model: int = 2560,
|
18 |
+
n_layer: int = 64,
|
19 |
+
vocab_size: int = 50277,
|
20 |
+
ssm_cfg: Optional[dict] = None,
|
21 |
+
rms_norm: bool = True,
|
22 |
+
residual_in_fp32: bool = True,
|
23 |
+
fused_add_norm: bool = True,
|
24 |
+
pad_vocab_size_multiple: int = 8,
|
25 |
+
|
26 |
+
# Not in original MambaConfig, but default arg in create_block in mamba_ssm repo; used in layer norm
|
27 |
+
norm_epsilon: float = 1e-5,
|
28 |
+
|
29 |
+
# Used in init_weights
|
30 |
+
initializer_cfg: Optional[dict] = None,
|
31 |
+
|
32 |
+
# Caduceus-specific params
|
33 |
+
bidirectional: bool = True,
|
34 |
+
bidirectional_strategy: Union[str, None] = "add",
|
35 |
+
bidirectional_weight_tie: bool = True,
|
36 |
+
rcps: bool = False,
|
37 |
+
complement_map: Optional[dict] = None, # used for RCPSEmbedding / RCPSLMHead
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
super().__init__(**kwargs)
|
41 |
+
self.d_model = d_model
|
42 |
+
self.n_layer = n_layer
|
43 |
+
self.vocab_size = vocab_size
|
44 |
+
self.ssm_cfg = ssm_cfg
|
45 |
+
self.rms_norm = rms_norm
|
46 |
+
self.residual_in_fp32 = residual_in_fp32
|
47 |
+
self.fused_add_norm = fused_add_norm
|
48 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
49 |
+
self.norm_epsilon = norm_epsilon
|
50 |
+
self.initializer_cfg = initializer_cfg
|
51 |
+
self.bidirectional = bidirectional
|
52 |
+
self.bidirectional_strategy = bidirectional_strategy
|
53 |
+
self.bidirectional_weight_tie = bidirectional_weight_tie
|
54 |
+
self.rcps = rcps
|
55 |
+
self.complement_map = complement_map
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40a63ecb757537d6f54fa31fbd988983ba5c24aafb16c48cfd8788324d8d1236
|
3 |
+
size 7747896
|
modeling_caduceus.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Caduceus model for Hugging Face.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
import math
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from mamba_ssm.modules.mamba_simple import Mamba, Block
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from transformers import PreTrainedModel
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithNoAttention, MaskedLMOutput, SequenceClassifierOutput
|
15 |
+
|
16 |
+
try:
|
17 |
+
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
|
18 |
+
except ImportError:
|
19 |
+
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
|
20 |
+
|
21 |
+
from .configuration_caduceus import CaduceusConfig
|
22 |
+
from .modeling_rcps import RCPSAddNormWrapper, RCPSEmbedding, RCPSLMHead, RCPSMambaBlock
|
23 |
+
|
24 |
+
|
25 |
+
def create_block(
|
26 |
+
d_model,
|
27 |
+
ssm_cfg=None,
|
28 |
+
norm_epsilon=1e-5,
|
29 |
+
rms_norm=False,
|
30 |
+
residual_in_fp32=False,
|
31 |
+
fused_add_norm=False,
|
32 |
+
layer_idx=None,
|
33 |
+
bidirectional=True,
|
34 |
+
bidirectional_strategy="add",
|
35 |
+
bidirectional_weight_tie=True,
|
36 |
+
rcps=False,
|
37 |
+
device=None,
|
38 |
+
dtype=None,
|
39 |
+
):
|
40 |
+
"""Create Caduceus block.
|
41 |
+
|
42 |
+
Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py
|
43 |
+
"""
|
44 |
+
if ssm_cfg is None:
|
45 |
+
ssm_cfg = {}
|
46 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
47 |
+
bidirectional_kwargs = {
|
48 |
+
"bidirectional": bidirectional,
|
49 |
+
"bidirectional_strategy": bidirectional_strategy,
|
50 |
+
"bidirectional_weight_tie": bidirectional_weight_tie,
|
51 |
+
}
|
52 |
+
mixer_cls = partial(BiMambaWrapper, layer_idx=layer_idx, **ssm_cfg, **bidirectional_kwargs, **factory_kwargs)
|
53 |
+
norm_cls = partial(
|
54 |
+
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
|
55 |
+
)
|
56 |
+
block_cls = RCPSMambaBlock if rcps else Block
|
57 |
+
block = block_cls(
|
58 |
+
d_model,
|
59 |
+
mixer_cls,
|
60 |
+
norm_cls=norm_cls,
|
61 |
+
fused_add_norm=fused_add_norm,
|
62 |
+
residual_in_fp32=residual_in_fp32,
|
63 |
+
)
|
64 |
+
block.layer_idx = layer_idx
|
65 |
+
return block
|
66 |
+
|
67 |
+
|
68 |
+
class BiMambaWrapper(nn.Module):
|
69 |
+
"""Thin wrapper around Mamba to support bi-directionality."""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
d_model: int,
|
74 |
+
bidirectional: bool = True,
|
75 |
+
bidirectional_strategy: Optional[str] = "add",
|
76 |
+
bidirectional_weight_tie: bool = True,
|
77 |
+
**mamba_kwargs,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
if bidirectional and bidirectional_strategy is None:
|
81 |
+
bidirectional_strategy = "add" # Default strategy: `add`
|
82 |
+
if bidirectional and bidirectional_strategy not in ["add", "ew_multiply"]:
|
83 |
+
raise NotImplementedError(f"`{bidirectional_strategy}` strategy for bi-directionality is not implemented!")
|
84 |
+
self.bidirectional = bidirectional
|
85 |
+
self.bidirectional_strategy = bidirectional_strategy
|
86 |
+
self.mamba_fwd = Mamba(
|
87 |
+
d_model=d_model,
|
88 |
+
**mamba_kwargs
|
89 |
+
)
|
90 |
+
if bidirectional:
|
91 |
+
self.mamba_rev = Mamba(
|
92 |
+
d_model=d_model,
|
93 |
+
**mamba_kwargs
|
94 |
+
)
|
95 |
+
if bidirectional_weight_tie: # Tie in and out projections (where most of param count lies)
|
96 |
+
self.mamba_rev.in_proj.weight = self.mamba_fwd.in_proj.weight
|
97 |
+
self.mamba_rev.in_proj.bias = self.mamba_fwd.in_proj.bias
|
98 |
+
self.mamba_rev.out_proj.weight = self.mamba_fwd.out_proj.weight
|
99 |
+
self.mamba_rev.out_proj.bias = self.mamba_fwd.out_proj.bias
|
100 |
+
else:
|
101 |
+
self.mamba_rev = None
|
102 |
+
|
103 |
+
def forward(self, hidden_states, inference_params=None):
|
104 |
+
"""Bidirectional-enabled forward pass
|
105 |
+
|
106 |
+
hidden_states: (B, L, D)
|
107 |
+
Returns: same shape as hidden_states
|
108 |
+
"""
|
109 |
+
out = self.mamba_fwd(hidden_states, inference_params=inference_params)
|
110 |
+
if self.bidirectional:
|
111 |
+
out_rev = self.mamba_rev(
|
112 |
+
hidden_states.flip(dims=(1,)), # Flip along the sequence length dimension
|
113 |
+
inference_params=inference_params
|
114 |
+
).flip(dims=(1,)) # Flip back for combining with forward hidden states
|
115 |
+
if self.bidirectional_strategy == "add":
|
116 |
+
out = out + out_rev
|
117 |
+
elif self.bidirectional_strategy == "ew_multiply":
|
118 |
+
out = out * out_rev
|
119 |
+
else:
|
120 |
+
raise NotImplementedError(f"`{self.bidirectional_strategy}` for bi-directionality not implemented!")
|
121 |
+
return out
|
122 |
+
|
123 |
+
|
124 |
+
class CaduceusEmbeddings(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
config: CaduceusConfig,
|
128 |
+
device=None,
|
129 |
+
dtype=None,
|
130 |
+
):
|
131 |
+
super().__init__()
|
132 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
133 |
+
if config.rcps:
|
134 |
+
self.word_embeddings = RCPSEmbedding(
|
135 |
+
config.vocab_size, config.d_model, config.complement_map, **factory_kwargs
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.d_model, **factory_kwargs)
|
139 |
+
|
140 |
+
def forward(self, input_ids):
|
141 |
+
"""
|
142 |
+
input_ids: (batch, seqlen)
|
143 |
+
"""
|
144 |
+
return self.word_embeddings(input_ids)
|
145 |
+
|
146 |
+
|
147 |
+
class CaduceusMixerModel(nn.Module):
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
config: CaduceusConfig,
|
151 |
+
device=None,
|
152 |
+
dtype=None,
|
153 |
+
) -> None:
|
154 |
+
super().__init__()
|
155 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
156 |
+
|
157 |
+
self.fused_add_norm = config.fused_add_norm
|
158 |
+
self.rcps = config.rcps
|
159 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
160 |
+
|
161 |
+
self.embeddings = CaduceusEmbeddings(config, **factory_kwargs)
|
162 |
+
|
163 |
+
# Mamba changes the order of residual and layer norm:
|
164 |
+
# Instead of LN -> Attn / MLP -> Add, we do:
|
165 |
+
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
|
166 |
+
# the main branch (output of MLP / Mixer). The model definition is unchanged.
|
167 |
+
# This is for performance reason: we can fuse add + layer_norm.
|
168 |
+
if config.fused_add_norm:
|
169 |
+
if layer_norm_fn is None or rms_norm_fn is None:
|
170 |
+
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
|
171 |
+
|
172 |
+
self.layers = nn.ModuleList(
|
173 |
+
[
|
174 |
+
create_block(
|
175 |
+
config.d_model,
|
176 |
+
ssm_cfg=config.ssm_cfg,
|
177 |
+
norm_epsilon=config.norm_epsilon,
|
178 |
+
rms_norm=config.rms_norm,
|
179 |
+
residual_in_fp32=config.residual_in_fp32,
|
180 |
+
fused_add_norm=config.fused_add_norm,
|
181 |
+
layer_idx=i,
|
182 |
+
bidirectional=config.bidirectional,
|
183 |
+
bidirectional_strategy=config.bidirectional_strategy,
|
184 |
+
bidirectional_weight_tie=config.bidirectional_weight_tie,
|
185 |
+
rcps=config.rcps,
|
186 |
+
**factory_kwargs,
|
187 |
+
)
|
188 |
+
for i in range(config.n_layer)
|
189 |
+
]
|
190 |
+
)
|
191 |
+
|
192 |
+
norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
|
193 |
+
config.d_model, eps=config.norm_epsilon, **factory_kwargs
|
194 |
+
)
|
195 |
+
self.norm_f = norm_f if (config.fused_add_norm or not config.rcps) else RCPSAddNormWrapper(norm_f)
|
196 |
+
|
197 |
+
def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
|
198 |
+
"""Mixer forward."""
|
199 |
+
all_hidden_states = []
|
200 |
+
if inputs_embeds is not None:
|
201 |
+
hidden_states = inputs_embeds
|
202 |
+
else:
|
203 |
+
hidden_states = self.embeddings(input_ids)
|
204 |
+
|
205 |
+
residual = None
|
206 |
+
for layer in self.layers:
|
207 |
+
if output_hidden_states:
|
208 |
+
all_hidden_states.append(hidden_states)
|
209 |
+
# TODO: Add support for gradient checkpointing
|
210 |
+
hidden_states, residual = layer(
|
211 |
+
hidden_states, residual, inference_params=None
|
212 |
+
)
|
213 |
+
|
214 |
+
if not self.fused_add_norm:
|
215 |
+
if self.rcps:
|
216 |
+
# Set prenorm=False here since we don't need the residual
|
217 |
+
hidden_states = self.norm_f(hidden_states, residual=residual, prenorm=False)
|
218 |
+
else:
|
219 |
+
residual = (hidden_states + residual) if residual is not None else hidden_states
|
220 |
+
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
221 |
+
else:
|
222 |
+
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
|
223 |
+
if self.rcps:
|
224 |
+
# Set prenorm=False here since we don't need the residual
|
225 |
+
hidden_states_fwd = fused_add_norm_fn(
|
226 |
+
hidden_states[..., :hidden_states.shape[-1] // 2],
|
227 |
+
self.norm_f.weight,
|
228 |
+
self.norm_f.bias,
|
229 |
+
eps=self.norm_f.eps,
|
230 |
+
residual=residual[..., :hidden_states.shape[-1] // 2],
|
231 |
+
prenorm=False,
|
232 |
+
residual_in_fp32=self.residual_in_fp32,
|
233 |
+
)
|
234 |
+
hidden_states_rc = fused_add_norm_fn(
|
235 |
+
hidden_states[..., hidden_states.shape[-1] // 2:].flip(dims=[-2, -1]),
|
236 |
+
self.norm_f.weight,
|
237 |
+
self.norm_f.bias,
|
238 |
+
eps=self.norm_f.eps,
|
239 |
+
residual=residual[..., hidden_states.shape[-1] // 2:].flip(dims=[-2, -1]),
|
240 |
+
prenorm=False,
|
241 |
+
residual_in_fp32=self.residual_in_fp32,
|
242 |
+
)
|
243 |
+
hidden_states = torch.cat([hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1)
|
244 |
+
else:
|
245 |
+
# Set prenorm=False here since we don't need the residual
|
246 |
+
hidden_states = fused_add_norm_fn(
|
247 |
+
hidden_states,
|
248 |
+
self.norm_f.weight,
|
249 |
+
self.norm_f.bias,
|
250 |
+
eps=self.norm_f.eps,
|
251 |
+
residual=residual,
|
252 |
+
prenorm=False,
|
253 |
+
residual_in_fp32=self.residual_in_fp32,
|
254 |
+
)
|
255 |
+
if output_hidden_states:
|
256 |
+
all_hidden_states.append(hidden_states)
|
257 |
+
return hidden_states, all_hidden_states
|
258 |
+
|
259 |
+
|
260 |
+
def cross_entropy(logits, y, ignore_index=-100):
|
261 |
+
"""Cross entropy loss."""
|
262 |
+
logits = logits.view(-1, logits.shape[-1])
|
263 |
+
y = y.view(-1)
|
264 |
+
return F.cross_entropy(logits, y, ignore_index=ignore_index)
|
265 |
+
|
266 |
+
|
267 |
+
def weighted_cross_entropy(logits, y, loss_weights, ignore_index=-100):
|
268 |
+
"""Weighted cross entropy loss (discounts certain tokens, e.g., repeated base pairs in genome)."""
|
269 |
+
logits = logits.view(-1, logits.shape[-1])
|
270 |
+
y = y.view(-1)
|
271 |
+
ce = F.cross_entropy(logits, y, ignore_index=ignore_index, reduction="none")
|
272 |
+
loss_weights = loss_weights.view(-1)
|
273 |
+
loss_weights[y == ignore_index] = 0.0
|
274 |
+
# TODO: Follows GPN implementation, but should we remove weight normalization?
|
275 |
+
return (ce * (loss_weights / loss_weights.sum())).sum()
|
276 |
+
|
277 |
+
|
278 |
+
class CaduceusPreTrainedModel(PreTrainedModel):
|
279 |
+
"""PreTrainedModel wrapper for Caduceus backbone."""
|
280 |
+
config_class = CaduceusConfig
|
281 |
+
base_model_prefix = "caduceus"
|
282 |
+
supports_gradient_checkpointing = False
|
283 |
+
_no_split_modules = ["BiMambaWrapper"]
|
284 |
+
|
285 |
+
def _init_weights(
|
286 |
+
self,
|
287 |
+
module,
|
288 |
+
initializer_range=0.02, # Now only used for embedding layer.
|
289 |
+
**kwargs,
|
290 |
+
):
|
291 |
+
"""Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py"""
|
292 |
+
|
293 |
+
n_layer = self.config.n_layer
|
294 |
+
initialized_cfg = self.config.initializer_cfg if self.config.initializer_cfg is not None else {}
|
295 |
+
rescale_prenorm_residual = initialized_cfg.get("rescale_prenorm_residual", True)
|
296 |
+
initializer_range = initialized_cfg.get("initializer_range", initializer_range)
|
297 |
+
n_residuals_per_layer = initialized_cfg.get("n_residuals_per_layer", 1)
|
298 |
+
|
299 |
+
if isinstance(module, nn.Linear):
|
300 |
+
if module.bias is not None:
|
301 |
+
if not getattr(module.bias, "_no_reinit", False):
|
302 |
+
nn.init.zeros_(module.bias)
|
303 |
+
elif isinstance(module, nn.Embedding):
|
304 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
305 |
+
|
306 |
+
if rescale_prenorm_residual:
|
307 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
308 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth.
|
309 |
+
# > Scale the weights of residual layers at initialization by a factor of 1/√N where N is the # of
|
310 |
+
# residual layers.
|
311 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
312 |
+
#
|
313 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
314 |
+
for name, p in module.named_parameters():
|
315 |
+
if name in ["out_proj.weight", "fc2.weight"]:
|
316 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
317 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
318 |
+
# We need to reinit p since this code could be called multiple times
|
319 |
+
# Having just p *= scale would repeatedly scale it down
|
320 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
321 |
+
with torch.no_grad():
|
322 |
+
p /= math.sqrt(n_residuals_per_layer * n_layer)
|
323 |
+
|
324 |
+
|
325 |
+
class Caduceus(CaduceusPreTrainedModel):
|
326 |
+
"""Caduceus model that can be instantiated using HF patterns."""
|
327 |
+
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
|
328 |
+
super().__init__(config)
|
329 |
+
|
330 |
+
if config.rcps:
|
331 |
+
assert config.complement_map is not None, "Complement map must be provided for RCPS."
|
332 |
+
|
333 |
+
# Adjust vocab size and complement maps if vocab padding is set.
|
334 |
+
if config.vocab_size % config.pad_vocab_size_multiple != 0:
|
335 |
+
config.vocab_size += config.pad_vocab_size_multiple - (config.vocab_size % config.pad_vocab_size_multiple)
|
336 |
+
if config.complement_map is not None and config.vocab_size > len(config.complement_map):
|
337 |
+
for i in range(len(config.complement_map), config.vocab_size):
|
338 |
+
config.complement_map[i] = i
|
339 |
+
|
340 |
+
self.config = config
|
341 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
342 |
+
self.backbone = CaduceusMixerModel(config, **factory_kwargs, **kwargs)
|
343 |
+
|
344 |
+
def forward(
|
345 |
+
self,
|
346 |
+
input_ids: torch.LongTensor = None,
|
347 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
348 |
+
output_hidden_states: Optional[bool] = None,
|
349 |
+
return_dict: Optional[bool] = None,
|
350 |
+
) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
|
351 |
+
"""HF-compatible forward method."""
|
352 |
+
output_hidden_states = (
|
353 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
354 |
+
)
|
355 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
356 |
+
|
357 |
+
hidden_states, all_hidden_states = self.backbone(
|
358 |
+
input_ids,
|
359 |
+
inputs_embeds=inputs_embeds,
|
360 |
+
output_hidden_states=output_hidden_states
|
361 |
+
)
|
362 |
+
if return_dict:
|
363 |
+
return BaseModelOutputWithNoAttention(
|
364 |
+
last_hidden_state=hidden_states,
|
365 |
+
hidden_states=all_hidden_states if output_hidden_states else None
|
366 |
+
)
|
367 |
+
elif output_hidden_states:
|
368 |
+
return hidden_states, all_hidden_states
|
369 |
+
else:
|
370 |
+
return hidden_states
|
371 |
+
|
372 |
+
|
373 |
+
class CaduceusForMaskedLM(CaduceusPreTrainedModel):
|
374 |
+
"""HF-compatible Caduceus model for masked language modeling."""
|
375 |
+
|
376 |
+
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
|
377 |
+
super().__init__(config, **kwargs)
|
378 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
379 |
+
self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
|
380 |
+
if config.rcps:
|
381 |
+
self.lm_head = RCPSLMHead(
|
382 |
+
complement_map=self.config.complement_map, # Use caduceus config as it might have been updated
|
383 |
+
vocab_size=self.config.vocab_size, # Use caduceus config as it might have been updated
|
384 |
+
true_dim=config.d_model,
|
385 |
+
dtype=dtype
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
self.lm_head = nn.Linear(
|
389 |
+
config.d_model,
|
390 |
+
self.config.vocab_size, # Use caduceus config as it might have been updated
|
391 |
+
bias=False,
|
392 |
+
**factory_kwargs
|
393 |
+
)
|
394 |
+
|
395 |
+
# Initialize weights and apply final processing
|
396 |
+
self.post_init()
|
397 |
+
|
398 |
+
def get_input_embeddings(self):
|
399 |
+
return self.caduceus.backbone.embeddings.word_embeddings
|
400 |
+
|
401 |
+
def set_input_embeddings(self, value):
|
402 |
+
if self.config.rcps:
|
403 |
+
raise NotImplementedError("Setting input embeddings for RCPS LM is not supported.")
|
404 |
+
self.caduceus.backbone.embeddings.word_embeddings = value
|
405 |
+
|
406 |
+
def get_output_embeddings(self):
|
407 |
+
return self.lm_head
|
408 |
+
|
409 |
+
def set_output_embeddings(self, new_embeddings):
|
410 |
+
"""Overrides output embeddings."""
|
411 |
+
if self.config.rcps:
|
412 |
+
raise NotImplementedError("Setting output embeddings for RCPS LM is not supported.")
|
413 |
+
self.lm_head = new_embeddings
|
414 |
+
|
415 |
+
def tie_weights(self):
|
416 |
+
"""Tie weights, accounting for RCPS."""
|
417 |
+
if self.config.rcps:
|
418 |
+
self.lm_head.set_weight(self.get_input_embeddings().weight)
|
419 |
+
else:
|
420 |
+
super().tie_weights()
|
421 |
+
|
422 |
+
def get_decoder(self):
|
423 |
+
"""Get decoder (backbone) for the model."""
|
424 |
+
return self.caduceus
|
425 |
+
|
426 |
+
def set_decoder(self, decoder):
|
427 |
+
"""Set decoder (backbone) for the model."""
|
428 |
+
self.caduceus = decoder
|
429 |
+
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
input_ids: torch.LongTensor = None,
|
433 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
434 |
+
labels: Optional[torch.LongTensor] = None,
|
435 |
+
loss_weights: Optional[torch.FloatTensor] = None,
|
436 |
+
output_hidden_states: Optional[bool] = None,
|
437 |
+
return_dict: Optional[bool] = None,
|
438 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
439 |
+
"""HF-compatible forward method."""
|
440 |
+
|
441 |
+
output_hidden_states = (
|
442 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
443 |
+
)
|
444 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
445 |
+
|
446 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
447 |
+
outputs = self.caduceus(
|
448 |
+
input_ids=input_ids,
|
449 |
+
inputs_embeds=inputs_embeds,
|
450 |
+
output_hidden_states=output_hidden_states,
|
451 |
+
return_dict=return_dict,
|
452 |
+
)
|
453 |
+
|
454 |
+
hidden_states = outputs[0]
|
455 |
+
logits = self.lm_head(hidden_states)
|
456 |
+
logits = logits.float()
|
457 |
+
|
458 |
+
loss = None
|
459 |
+
if labels is not None:
|
460 |
+
if loss_weights is not None:
|
461 |
+
loss = weighted_cross_entropy(logits, labels, loss_weights, ignore_index=self.config.pad_token_id)
|
462 |
+
else:
|
463 |
+
loss = cross_entropy(logits, labels, ignore_index=self.config.pad_token_id)
|
464 |
+
|
465 |
+
if not return_dict:
|
466 |
+
output = (logits,) + outputs[1:]
|
467 |
+
return (loss,) + output if loss is not None else output
|
468 |
+
|
469 |
+
return MaskedLMOutput(
|
470 |
+
loss=loss,
|
471 |
+
logits=logits,
|
472 |
+
hidden_states=outputs.hidden_states,
|
473 |
+
)
|
474 |
+
|
475 |
+
|
476 |
+
class CaduceusForSequenceClassification(CaduceusPreTrainedModel):
|
477 |
+
def __init__(
|
478 |
+
self,
|
479 |
+
config: CaduceusConfig,
|
480 |
+
pooling_strategy: str = "mean",
|
481 |
+
conjoin_train: bool = False,
|
482 |
+
conjoin_eval: bool = False,
|
483 |
+
device=None,
|
484 |
+
dtype=None,
|
485 |
+
**kwargs):
|
486 |
+
super().__init__(config, **kwargs)
|
487 |
+
if pooling_strategy not in ["mean", "max", "first", "last"]:
|
488 |
+
raise NotImplementedError(f"Pooling strategy `{pooling_strategy}` not implemented.")
|
489 |
+
self.pooling_strategy = pooling_strategy
|
490 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
491 |
+
self.num_labels = kwargs.get("num_labels", config.num_labels)
|
492 |
+
self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
|
493 |
+
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
|
494 |
+
|
495 |
+
self.conjoin_train = conjoin_train
|
496 |
+
self.conjoin_eval = conjoin_eval
|
497 |
+
|
498 |
+
# Initialize weights and apply final processing
|
499 |
+
self.post_init()
|
500 |
+
|
501 |
+
def get_input_embeddings(self):
|
502 |
+
return self.caduceus.backbone.embeddings.word_embeddings
|
503 |
+
|
504 |
+
def set_input_embeddings(self, value):
|
505 |
+
if self.config.rcps:
|
506 |
+
raise NotImplementedError("Setting input embeddings for RCPS LM is not supported.")
|
507 |
+
self.caduceus.backbone.embeddings.word_embeddings = value
|
508 |
+
|
509 |
+
def pool_hidden_states(self, hidden_states, sequence_length_dim=1):
|
510 |
+
"""Pools hidden states along sequence length dimension."""
|
511 |
+
if self.pooling_strategy == "mean": # Mean pooling along sequence length dimension
|
512 |
+
return hidden_states.mean(dim=sequence_length_dim)
|
513 |
+
if self.pooling_strategy == "max": # Max pooling along sequence length dimension
|
514 |
+
return hidden_states.max(dim=sequence_length_dim).values
|
515 |
+
if self.pooling_strategy == "last": # Use embedding of last token in the sequence
|
516 |
+
return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[-1, ...]
|
517 |
+
if self.pooling_strategy == "first": # Use embedding of first token in the sequence
|
518 |
+
return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[0, ...]
|
519 |
+
|
520 |
+
def forward(
|
521 |
+
self,
|
522 |
+
input_ids: torch.LongTensor = None,
|
523 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
524 |
+
labels: Optional[torch.LongTensor] = None,
|
525 |
+
output_hidden_states: Optional[bool] = None,
|
526 |
+
return_dict: Optional[bool] = None,
|
527 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
528 |
+
r"""
|
529 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
530 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
531 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
532 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
533 |
+
"""
|
534 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
535 |
+
|
536 |
+
# Get hidden representations from the backbone
|
537 |
+
if self.config.rcps: # Hidden states have 2 * d_model channels for RCPS
|
538 |
+
transformer_outputs = self.caduceus(
|
539 |
+
input_ids,
|
540 |
+
inputs_embeds=inputs_embeds,
|
541 |
+
output_hidden_states=output_hidden_states,
|
542 |
+
return_dict=return_dict,
|
543 |
+
)
|
544 |
+
hidden_states = torch.stack(
|
545 |
+
[
|
546 |
+
transformer_outputs[0][..., :self.config.d_model],
|
547 |
+
torch.flip(transformer_outputs[0][..., self.config.d_model:], dims=[1, 2])
|
548 |
+
],
|
549 |
+
dim=-1
|
550 |
+
)
|
551 |
+
elif self.conjoin_train or (self.conjoin_eval and not self.training): # For conjoining / post-hoc conjoining
|
552 |
+
assert input_ids is not None, "`input_ids` must be provided for conjoining."
|
553 |
+
assert input_ids.ndim == 3, "`input_ids` must be 3D tensor: channels corresponds to forward and rc strands."
|
554 |
+
transformer_outputs = self.caduceus(
|
555 |
+
input_ids[..., 0],
|
556 |
+
inputs_embeds=None,
|
557 |
+
output_hidden_states=output_hidden_states,
|
558 |
+
return_dict=return_dict,
|
559 |
+
)
|
560 |
+
transformer_outputs_rc = self.caduceus(
|
561 |
+
input_ids[..., 1],
|
562 |
+
inputs_embeds=None,
|
563 |
+
output_hidden_states=output_hidden_states,
|
564 |
+
return_dict=return_dict,
|
565 |
+
)
|
566 |
+
# Stack along channel dimension (dim=-1)
|
567 |
+
hidden_states = torch.stack([transformer_outputs[0], transformer_outputs_rc[0]], dim=-1)
|
568 |
+
else:
|
569 |
+
transformer_outputs = self.caduceus(
|
570 |
+
input_ids,
|
571 |
+
inputs_embeds=None,
|
572 |
+
output_hidden_states=output_hidden_states,
|
573 |
+
return_dict=return_dict,
|
574 |
+
)
|
575 |
+
hidden_states = transformer_outputs[0]
|
576 |
+
|
577 |
+
# Pool and get logits
|
578 |
+
pooled_hidden_states = self.pool_hidden_states(hidden_states)
|
579 |
+
# Potentially run `score` twice (with parameters shared) for conjoining
|
580 |
+
if hidden_states.ndim == 4: # bsz, seq_len, hidden_dim, 2 where last channel has the stacked fwd and rc reps
|
581 |
+
logits_fwd = self.score(pooled_hidden_states[..., 0])
|
582 |
+
logits_rc = self.score(pooled_hidden_states[..., 1])
|
583 |
+
logits = (logits_fwd + logits_rc) / 2
|
584 |
+
else:
|
585 |
+
logits = self.score(pooled_hidden_states)
|
586 |
+
|
587 |
+
loss = None
|
588 |
+
if labels is not None:
|
589 |
+
labels = labels.to(logits.device)
|
590 |
+
if self.config.problem_type is None:
|
591 |
+
if self.num_labels == 1:
|
592 |
+
self.config.problem_type = "regression"
|
593 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
594 |
+
self.config.problem_type = "single_label_classification"
|
595 |
+
else:
|
596 |
+
self.config.problem_type = "multi_label_classification"
|
597 |
+
|
598 |
+
if self.config.problem_type == "regression":
|
599 |
+
if self.num_labels == 1:
|
600 |
+
loss = F.mse_loss(logits.squeeze(), labels.squeeze())
|
601 |
+
else:
|
602 |
+
loss = F.mse_loss(logits, labels)
|
603 |
+
elif self.config.problem_type == "single_label_classification":
|
604 |
+
loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
|
605 |
+
elif self.config.problem_type == "multi_label_classification":
|
606 |
+
loss = F.binary_cross_entropy_with_logits(logits, labels)
|
607 |
+
if not return_dict:
|
608 |
+
output = (logits,) + transformer_outputs[1:]
|
609 |
+
return ((loss,) + output) if loss is not None else output
|
610 |
+
|
611 |
+
return SequenceClassifierOutput(
|
612 |
+
loss=loss,
|
613 |
+
logits=logits,
|
614 |
+
hidden_states=transformer_outputs.hidden_states,
|
615 |
+
)
|
modeling_rcps.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Reverse-complement equivariant modules.
|
2 |
+
|
3 |
+
"""
|
4 |
+
from collections import OrderedDict
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import Tensor
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
try:
|
13 |
+
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
|
14 |
+
except ImportError:
|
15 |
+
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
|
16 |
+
|
17 |
+
|
18 |
+
class RCPSEmbedding(nn.Module):
|
19 |
+
"""Embedding layer that supports reverse-complement equivariance."""
|
20 |
+
def __init__(self, vocab_size: int, d_model: int, complement_map: dict, **factory_kwargs):
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
vocab_size: Size of vocabulary.
|
24 |
+
d_model: Dimensionality of embedding (actual embedding matrix will have 1/2 the output dim).
|
25 |
+
complement_map: Dictionary mapping each token id to its complement.
|
26 |
+
"""
|
27 |
+
super().__init__()
|
28 |
+
self.register_buffer(
|
29 |
+
"complement_map",
|
30 |
+
torch.tensor(list(OrderedDict(complement_map).values()), dtype=torch.long)
|
31 |
+
)
|
32 |
+
self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
|
33 |
+
|
34 |
+
@property
|
35 |
+
def weight(self):
|
36 |
+
"""Embedding weights."""
|
37 |
+
return self.embedding.weight
|
38 |
+
|
39 |
+
def set_weight(self, value):
|
40 |
+
"""Set embedding weights."""
|
41 |
+
self.embedding.weight = value
|
42 |
+
|
43 |
+
def rc(self, x):
|
44 |
+
"""Reverse-complement a tensor of input_ids by flipping along length dimension and complementing the ids."""
|
45 |
+
return torch.gather(
|
46 |
+
self.complement_map.unsqueeze(0).expand(x.shape[0], -1),
|
47 |
+
dim=1,
|
48 |
+
index=torch.flip(x, dims=[-1])
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, input_ids):
|
52 |
+
"""Reverse-complement equivariant forward pass.
|
53 |
+
|
54 |
+
This embedding module doubles the output dimensionality to support reverse-complement equivariance.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
input_ids: Input tensor of shape (batch_size, seq_len)
|
58 |
+
Returns:
|
59 |
+
Embedding tensor of shape (batch_size, seq_len, d_model * 2)
|
60 |
+
"""
|
61 |
+
fwd_out = self.embedding(input_ids)
|
62 |
+
rc_out = torch.flip(self.embedding(self.rc(input_ids)), dims=[-2, -1])
|
63 |
+
|
64 |
+
return torch.cat([fwd_out, rc_out], dim=-1)
|
65 |
+
|
66 |
+
|
67 |
+
class RCPSWrapper(nn.Module):
|
68 |
+
"""Wrapper to convert arbitrary nn.Module into a reverse-complement equivariant module.
|
69 |
+
|
70 |
+
See ref. "Towards a Better Understanding of Reverse-Complement Equivariance for Deep Learning Models in Regulatory
|
71 |
+
Genomics", Zhou et al. (2022), https://proceedings.mlr.press/v165/zhou22a.html for more details.
|
72 |
+
"""
|
73 |
+
def __init__(self, submodule: nn.Module):
|
74 |
+
super().__init__()
|
75 |
+
self.submodule = submodule
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def rc(x):
|
79 |
+
"""Reverse-complement a tensor by flipping the length (dim=-2) and channel (dim=-1) dimensions."""
|
80 |
+
return torch.flip(x, dims=[-2, -1])
|
81 |
+
|
82 |
+
def forward(self, x, **kwargs):
|
83 |
+
"""Reverse-complement equivariant forward pass.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
x: Input tensor of shape (batch_size, seq_len, channels)
|
87 |
+
Returns:
|
88 |
+
Output tensor of shape (batch_size, seq_len, channels * 2)
|
89 |
+
"""
|
90 |
+
n_channels = x.shape[-1]
|
91 |
+
# Run submodule along sequence
|
92 |
+
fwd_out = self.submodule(x[..., :n_channels // 2], **kwargs)
|
93 |
+
# Run submodule along rc-sequence
|
94 |
+
rc_out = self.submodule(self.rc(x[..., n_channels // 2:]), **kwargs)
|
95 |
+
# Concatenate along channel dimension (dim=-1)
|
96 |
+
return torch.cat([fwd_out, self.rc(rc_out)], dim=-1)
|
97 |
+
|
98 |
+
|
99 |
+
class RCPSAddNormWrapper(RCPSWrapper):
|
100 |
+
"""RC equivariant AddNorm layer."""
|
101 |
+
def __init__(self, submodule: nn.Module):
|
102 |
+
super().__init__(submodule)
|
103 |
+
|
104 |
+
def forward(self, x, residual=None, prenorm=False):
|
105 |
+
"""
|
106 |
+
Args:
|
107 |
+
x: Input tensor of shape (batch_size, seq_len, channels)
|
108 |
+
residual: Residual tensor of shape (batch_size, seq_len, channels) or None.
|
109 |
+
prenorm: Whether to return residual.
|
110 |
+
"""
|
111 |
+
n_channels = x.shape[-1]
|
112 |
+
if residual is None:
|
113 |
+
residual = x
|
114 |
+
x_fwd = self.submodule(x[..., :n_channels // 2].to(dtype=self.submodule.weight.dtype))
|
115 |
+
x_rc = self.submodule(self.rc(x[..., n_channels // 2:]).to(dtype=self.submodule.weight.dtype))
|
116 |
+
x = torch.cat([x_fwd, self.rc(x_rc)], dim=-1)
|
117 |
+
else:
|
118 |
+
residual_fwd = x[..., :n_channels // 2] + residual[..., :n_channels // 2]
|
119 |
+
x_fwd = self.submodule(residual_fwd.to(dtype=self.submodule.weight.dtype))
|
120 |
+
|
121 |
+
residual_rc = self.rc(x[..., n_channels // 2:]) + self.rc(residual[..., n_channels // 2:])
|
122 |
+
x_rc = self.submodule(residual_rc.to(dtype=self.submodule.weight.dtype))
|
123 |
+
|
124 |
+
residual = torch.cat([residual_fwd, self.rc(residual_rc)], dim=-1)
|
125 |
+
x = torch.cat([x_fwd, self.rc(x_rc)], dim=-1)
|
126 |
+
|
127 |
+
return x if not prenorm else (x, residual)
|
128 |
+
|
129 |
+
|
130 |
+
class RCPSMambaBlock(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
dim,
|
134 |
+
mixer_cls,
|
135 |
+
norm_cls=nn.LayerNorm,
|
136 |
+
fused_add_norm=False,
|
137 |
+
residual_in_fp32=False,
|
138 |
+
device=None, # Keep for consistency with original Mamba Block
|
139 |
+
dtype=None, # Keep for consistency with original Mamba Block
|
140 |
+
):
|
141 |
+
"""RCPS version of simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection.
|
142 |
+
|
143 |
+
Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py
|
144 |
+
"""
|
145 |
+
super().__init__()
|
146 |
+
self.residual_in_fp32 = residual_in_fp32
|
147 |
+
self.fused_add_norm = fused_add_norm
|
148 |
+
self.mixer = RCPSWrapper(mixer_cls(dim))
|
149 |
+
norm_f = norm_cls(dim)
|
150 |
+
self.norm = norm_f if fused_add_norm else RCPSAddNormWrapper(norm_f)
|
151 |
+
if self.fused_add_norm:
|
152 |
+
assert RMSNorm is not None, "RMSNorm import fails"
|
153 |
+
assert isinstance(
|
154 |
+
self.norm, (nn.LayerNorm, RMSNorm)
|
155 |
+
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
|
156 |
+
|
157 |
+
def forward(
|
158 |
+
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
|
159 |
+
):
|
160 |
+
r"""Pass the input through the encoder layer.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
hidden_states: the sequence to the encoder layer (required).
|
164 |
+
residual: hidden_states = Mixer(LN(residual)).
|
165 |
+
inference_params: inference parameters for mixer.
|
166 |
+
"""
|
167 |
+
if not self.fused_add_norm:
|
168 |
+
hidden_states, residual = self.norm(hidden_states, residual=residual, prenorm=True)
|
169 |
+
if self.residual_in_fp32:
|
170 |
+
residual = residual.to(torch.float32)
|
171 |
+
else:
|
172 |
+
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
|
173 |
+
|
174 |
+
hidden_states_fwd, residual_fwd = fused_add_norm_fn(
|
175 |
+
hidden_states[..., hidden_states.shape[-1] // 2:],
|
176 |
+
self.norm.weight,
|
177 |
+
self.norm.bias,
|
178 |
+
residual=residual[..., hidden_states.shape[-1] // 2:] if residual is not None else None,
|
179 |
+
prenorm=True,
|
180 |
+
residual_in_fp32=self.residual_in_fp32,
|
181 |
+
eps=self.norm.eps,
|
182 |
+
)
|
183 |
+
|
184 |
+
hidden_states_rc, residual_rc = fused_add_norm_fn(
|
185 |
+
hidden_states[..., :hidden_states.shape[-1] // 2].flip(dims=[-2, -1]),
|
186 |
+
self.norm.weight,
|
187 |
+
self.norm.bias,
|
188 |
+
residual=residual[..., :hidden_states.shape[-1] // 2].flip(dims=[-2, -1]) if residual is not None else None,
|
189 |
+
prenorm=True,
|
190 |
+
residual_in_fp32=self.residual_in_fp32,
|
191 |
+
eps=self.norm.eps,
|
192 |
+
)
|
193 |
+
hidden_states = torch.cat([hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1)
|
194 |
+
residual = torch.cat([residual_fwd, residual_rc.flip(dims=[-2, -1])], dim=-1)
|
195 |
+
hidden_states = self.mixer(hidden_states, inference_params=inference_params)
|
196 |
+
return hidden_states, residual
|
197 |
+
|
198 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
199 |
+
"""Allocate inference cache for mixer.
|
200 |
+
|
201 |
+
Keep for compatibility with original Mamba Block.
|
202 |
+
"""
|
203 |
+
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
204 |
+
|
205 |
+
|
206 |
+
class RCPSLMHead(nn.Module):
|
207 |
+
"""LM Head for reverse-complement equivariant inputs, which have dim * 2 relative to standard inputs."""
|
208 |
+
def __init__(self, true_dim: int, vocab_size: int, complement_map: dict, **factory_kwargs):
|
209 |
+
"""
|
210 |
+
`true_dim` corresponds to the actual dimensionality of the input were it not reverse-complement
|
211 |
+
equivariant, i.e. 0.5 times the actual input dim.
|
212 |
+
"""
|
213 |
+
super().__init__()
|
214 |
+
self.register_buffer(
|
215 |
+
"complement_map",
|
216 |
+
torch.tensor(list(OrderedDict(complement_map).values()), dtype=torch.long)
|
217 |
+
)
|
218 |
+
self.true_dim = true_dim
|
219 |
+
self.lm_head = nn.Linear(true_dim, vocab_size, bias=False, **factory_kwargs)
|
220 |
+
|
221 |
+
@property
|
222 |
+
def weight(self):
|
223 |
+
"""LM head weights."""
|
224 |
+
return self.lm_head.weight
|
225 |
+
|
226 |
+
def set_weight(self, value):
|
227 |
+
"""Set LM head weights."""
|
228 |
+
self.lm_head.weight = value
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
"""
|
232 |
+
Args:
|
233 |
+
x: Input tensor of shape (batch_size, seq_len, dim), where dim = 2 * true_dim.
|
234 |
+
"""
|
235 |
+
n_channels = x.shape[-1]
|
236 |
+
assert n_channels == 2 * self.true_dim, "Input must have 2 * true_dim channels."
|
237 |
+
fwd_logits = F.linear(x[..., :n_channels // 2], self.weight, bias=self.lm_head.bias)
|
238 |
+
rc_logits = F.linear(
|
239 |
+
torch.flip(x[..., n_channels // 2:], dims=[-1]),
|
240 |
+
self.weight[self.complement_map, :],
|
241 |
+
bias=self.lm_head.bias
|
242 |
+
)
|
243 |
+
return fwd_logits + rc_logits
|