|
"""MDLM model for Hugging Face. |
|
|
|
""" |
|
import math |
|
import typing |
|
|
|
import einops |
|
import flash_attn |
|
import flash_attn.layers.rotary |
|
import huggingface_hub |
|
import omegaconf |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import transformers |
|
from transformers import modeling_outputs |
|
|
|
from .configuration_mdlm import MDLMConfig |
|
|
|
|
|
torch._C._jit_set_profiling_mode(False) |
|
torch._C._jit_set_profiling_executor(False) |
|
torch._C._jit_override_can_fuse_on_cpu(True) |
|
torch._C._jit_override_can_fuse_on_gpu(True) |
|
|
|
|
|
def bias_dropout_add_scale( |
|
x: torch.Tensor, |
|
bias: typing.Optional[torch.Tensor], |
|
scale: torch.Tensor, |
|
residual: typing.Optional[torch.Tensor], |
|
prob: float, |
|
training: bool) -> torch.Tensor: |
|
if bias is not None: |
|
out = scale * F.dropout(x + bias, p=prob, training=training) |
|
else: |
|
out = scale * F.dropout(x, p=prob, training=training) |
|
|
|
if residual is not None: |
|
out = residual + out |
|
return out |
|
|
|
|
|
def get_bias_dropout_add_scale(training): |
|
def _bias_dropout_add(x, bias, scale, residual, prob): |
|
return bias_dropout_add_scale( |
|
x, bias, scale, residual, prob, training) |
|
|
|
return _bias_dropout_add |
|
|
|
|
|
|
|
def modulate(x: torch.Tensor, |
|
shift: torch.Tensor, |
|
scale: torch.Tensor) -> torch.Tensor: |
|
return x * (1 + scale) + shift |
|
|
|
|
|
@torch.jit.script |
|
def bias_dropout_add_scale_fused_train( |
|
x: torch.Tensor, |
|
bias: typing.Optional[torch.Tensor], |
|
scale: torch.Tensor, |
|
residual: typing.Optional[torch.Tensor], |
|
prob: float) -> torch.Tensor: |
|
return bias_dropout_add_scale( |
|
x, bias, scale, residual, prob, True) |
|
|
|
|
|
@torch.jit.script |
|
def bias_dropout_add_scale_fused_inference( |
|
x: torch.Tensor, |
|
bias: typing.Optional[torch.Tensor], |
|
scale: torch.Tensor, |
|
residual: typing.Optional[torch.Tensor], |
|
prob: float) -> torch.Tensor: |
|
return bias_dropout_add_scale( |
|
x, bias, scale, residual, prob, False) |
|
|
|
|
|
@torch.jit.script |
|
def modulate_fused(x: torch.Tensor, |
|
shift: torch.Tensor, |
|
scale: torch.Tensor) -> torch.Tensor: |
|
return modulate(x, shift, scale) |
|
|
|
|
|
class Rotary(torch.nn.Module): |
|
def __init__(self, dim, base=10_000): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer('inv_freq', inv_freq) |
|
self.seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
|
|
def forward(self, x, seq_dim=1): |
|
seq_len = x.shape[seq_dim] |
|
if seq_len != self.seq_len_cached: |
|
self.seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone()) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1) |
|
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1) |
|
|
|
self.cos_cached[:,:,2,:,:].fill_(1.) |
|
self.sin_cached[:,:,2,:,:].fill_(0.) |
|
|
|
return self.cos_cached, self.sin_cached |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(qkv, cos, sin): |
|
cos = cos[0,:,0,0,:cos.shape[-1]//2] |
|
sin = sin[0,:,0,0,:sin.shape[-1]//2] |
|
return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin) |
|
|
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones([dim])) |
|
self.dim = dim |
|
def forward(self, x): |
|
with torch.cuda.amp.autocast(enabled=False): |
|
x = F.layer_norm(x.float(), [self.dim]) |
|
return x * self.weight[None,None,:] |
|
|
|
|
|
def residual_linear(x, W, x_skip, residual_scale): |
|
"""x_skip + residual_scale * W @ x""" |
|
dim_out, dim_in = W.shape[0], W.shape[1] |
|
return torch.addmm( |
|
x_skip.view(-1, dim_out), |
|
x.view(-1, dim_in), |
|
W.T, |
|
alpha=residual_scale).view(*x.shape[:-1], dim_out) |
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True)) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
- math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, |
|
torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
"""Embeds class labels into vector representations. |
|
|
|
Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, num_classes, cond_size): |
|
super().__init__() |
|
self.embedding_table = nn.Embedding(num_classes + 1, cond_size) |
|
self.num_classes = num_classes |
|
|
|
|
|
|
|
def forward(self, labels): |
|
embeddings = self.embedding_table(labels) |
|
return embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
def regular_attention_multi_headed(qkv): |
|
|
|
|
|
batch_size, seq_len, _, num_heads, head_dim = qkv.shape |
|
|
|
|
|
q = qkv[:, :, 0, :, :] |
|
k = qkv[:, :, 1, :, :] |
|
v = qkv[:, :, 2, :, :] |
|
|
|
|
|
|
|
q = q.transpose(1, 2) |
|
k = k.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
|
|
|
|
|
|
attention_scores = torch.matmul( |
|
q, k.transpose(-2, -1)) / math.sqrt(head_dim) |
|
|
|
|
|
attention_probs = F.softmax(attention_scores, dim=-1) |
|
|
|
|
|
attention_output = torch.matmul(attention_probs, v) |
|
|
|
|
|
attention_output = attention_output.transpose(1, 2) |
|
return einops.rearrange(attention_output, |
|
'b s h d -> b s (h d)') |
|
|
|
|
|
class DDiTBlock(nn.Module): |
|
def __init__(self, dim, n_heads, cond_dim, mlp_ratio=4, |
|
dropout=0.1, use_flash_attn=True): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
self.use_flash_attn = use_flash_attn |
|
|
|
self.norm1 = LayerNorm(dim) |
|
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False) |
|
self.attn_out = nn.Linear(dim, dim, bias=False) |
|
self.dropout1 = nn.Dropout(dropout) |
|
|
|
self.norm2 = LayerNorm(dim) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(dim, mlp_ratio * dim, bias=True), |
|
nn.GELU(approximate='tanh'), |
|
nn.Linear(mlp_ratio * dim, dim, bias=True)) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout = dropout |
|
|
|
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True) |
|
self.adaLN_modulation.weight.data.zero_() |
|
self.adaLN_modulation.bias.data.zero_() |
|
|
|
|
|
def _get_bias_dropout_scale(self): |
|
if self.training: |
|
return bias_dropout_add_scale_fused_train |
|
else: |
|
return bias_dropout_add_scale_fused_inference |
|
|
|
|
|
def forward(self, x, rotary_cos_sin, c, seqlens=None): |
|
batch_size, seq_len = x.shape[0], x.shape[1] |
|
|
|
bias_dropout_scale_fn = self._get_bias_dropout_scale() |
|
|
|
(shift_msa, scale_msa, gate_msa, shift_mlp, |
|
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2) |
|
|
|
|
|
x_skip = x |
|
x = modulate_fused(self.norm1(x), shift_msa, scale_msa) |
|
|
|
qkv = self.attn_qkv(x) |
|
qkv = einops.rearrange( |
|
qkv, |
|
'b s (three h d) -> b s three h d', |
|
three=3, |
|
h=self.n_heads) |
|
with torch.cuda.amp.autocast(enabled=False): |
|
cos, sin = rotary_cos_sin |
|
qkv = apply_rotary_pos_emb( |
|
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype)) |
|
if seqlens is None: |
|
cu_seqlens = torch.arange( |
|
0, (batch_size + 1) * seq_len, step=seq_len, |
|
dtype=torch.int32, device=qkv.device) |
|
else: |
|
cu_seqlens = seqlens.cumsum(-1) |
|
x = regular_attention_multi_headed(qkv) |
|
|
|
x = bias_dropout_scale_fn(self.attn_out(x), |
|
None, |
|
gate_msa, |
|
x_skip, |
|
self.dropout) |
|
|
|
|
|
x = bias_dropout_scale_fn( |
|
self.mlp(modulate_fused( |
|
self.norm2(x), shift_mlp, scale_mlp)), |
|
None, gate_mlp, x, self.dropout) |
|
return x |
|
|
|
|
|
|
|
class EmbeddingLayer(nn.Module): |
|
def __init__(self, dim, vocab_dim): |
|
super().__init__() |
|
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim))) |
|
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5)) |
|
|
|
def forward(self, x): |
|
return self.embedding[x] |
|
|
|
|
|
class DDitFinalLayer(nn.Module): |
|
def __init__(self, hidden_size, out_channels, cond_dim): |
|
super().__init__() |
|
self.norm_final = LayerNorm(hidden_size) |
|
self.linear = nn.Linear(hidden_size, out_channels) |
|
self.linear.weight.data.zero_() |
|
self.linear.bias.data.zero_() |
|
|
|
self.adaLN_modulation = nn.Linear(cond_dim, |
|
2 * hidden_size, |
|
bias=True) |
|
self.adaLN_modulation.weight.data.zero_() |
|
self.adaLN_modulation.bias.data.zero_() |
|
|
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2) |
|
x = modulate_fused(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DITBackbone(nn.Module): |
|
def __init__( |
|
self, |
|
config: MDLMConfig): |
|
super().__init__() |
|
|
|
self.config = config |
|
self.vocab_size = config.vocab_size |
|
|
|
self.vocab_embed = EmbeddingLayer( |
|
config.hidden_dim, |
|
config.vocab_size) |
|
self.sigma_map = TimestepEmbedder( |
|
config.cond_dim) |
|
self.rotary_emb = Rotary( |
|
config.hidden_dim // config.n_heads) |
|
|
|
blocks = [] |
|
for _ in range(config.n_blocks): |
|
blocks.append(DDiTBlock(config.hidden_dim, |
|
config.n_heads, |
|
config.cond_dim, |
|
dropout=config.dropout)) |
|
self.blocks = nn.ModuleList(blocks) |
|
|
|
self.output_layer = DDitFinalLayer( |
|
config.hidden_dim, |
|
config.vocab_size, |
|
config.cond_dim) |
|
self.precision = torch.float32 |
|
|
|
def _get_bias_dropout_scale(self): |
|
if self.training: |
|
return bias_dropout_add_scale_fused_train |
|
else: |
|
return bias_dropout_add_scale_fused_inference |
|
|
|
def forward(self, indices, sigma, |
|
output_hidden_states=False): |
|
if not self.config.time_conditioning: |
|
sigma = torch.zeros_like(sigma) |
|
all_hidden_states = [] |
|
x = self.vocab_embed(indices) |
|
if output_hidden_states: |
|
all_hidden_states.append(x) |
|
c = F.silu(self.sigma_map(sigma)) |
|
|
|
rotary_cos_sin = self.rotary_emb(x) |
|
|
|
with torch.cuda.amp.autocast(dtype=self.precision): |
|
for i in range(len(self.blocks)): |
|
x = self.blocks[i](x, rotary_cos_sin, c, |
|
seqlens=None) |
|
if output_hidden_states: |
|
all_hidden_states.append(x) |
|
logits = self.output_layer(x, c) |
|
return logits, all_hidden_states |
|
|
|
class MDLM(transformers.PreTrainedModel): |
|
"""HF-compatible model.""" |
|
config_class = MDLMConfig |
|
base_model_prefix = "mdlm" |
|
|
|
def __init__( |
|
self, |
|
config: MDLMConfig): |
|
super().__init__(config) |
|
self.backbone = DITBackbone(config) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
timesteps: torch.FloatTensor = None, |
|
output_hidden_states: typing.Optional[bool] = None, |
|
return_dict: typing.Optional[bool] = None, |
|
) -> typing.Union[ |
|
torch.Tensor, typing.Tuple, |
|
modeling_outputs.MaskedLMOutput]: |
|
"""HF-compatible forward method.""" |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict \ |
|
if return_dict is not None \ |
|
else self.config.use_return_dict |
|
|
|
logits, all_hidden_states = self.backbone( |
|
indices=input_ids, |
|
sigma=timesteps, |
|
output_hidden_states=output_hidden_states |
|
) |
|
if return_dict: |
|
return modeling_outputs.MaskedLMOutput( |
|
logits=logits, |
|
hidden_states=all_hidden_states if output_hidden_states else None, |
|
loss=None |
|
) |
|
elif output_hidden_states: |
|
return logits, all_hidden_states |
|
else: |
|
return logits |
|
|