Fill-Mask
Transformers
Safetensors
English
mdlm
custom_code
mdlm-no_flashattn-fp32-owt / modeling_mdlm_2.py
subbham's picture
Upload MDLM
19f029e verified
"""MDLM model for Hugging Face.
"""
import math
import typing
import einops
import flash_attn
import flash_attn.layers.rotary
import huggingface_hub
import omegaconf
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers import modeling_outputs
from .configuration_mdlm import MDLMConfig
# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
def bias_dropout_add_scale(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float,
training: bool) -> torch.Tensor:
if bias is not None:
out = scale * F.dropout(x + bias, p=prob, training=training)
else:
out = scale * F.dropout(x, p=prob, training=training)
if residual is not None:
out = residual + out
return out
def get_bias_dropout_add_scale(training):
def _bias_dropout_add(x, bias, scale, residual, prob):
return bias_dropout_add_scale(
x, bias, scale, residual, prob, training)
return _bias_dropout_add
# function overload
def modulate(x: torch.Tensor,
shift: torch.Tensor,
scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
@torch.jit.script
def bias_dropout_add_scale_fused_train(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float) -> torch.Tensor:
return bias_dropout_add_scale(
x, bias, scale, residual, prob, True)
@torch.jit.script
def bias_dropout_add_scale_fused_inference(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float) -> torch.Tensor:
return bias_dropout_add_scale(
x, bias, scale, residual, prob, False)
@torch.jit.script
def modulate_fused(x: torch.Tensor,
shift: torch.Tensor,
scale: torch.Tensor) -> torch.Tensor:
return modulate(x, shift, scale)
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10_000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
# dims are: batch, seq_len, qkv, head, dim
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
# This makes the transformation on v an identity.
self.cos_cached[:,:,2,:,:].fill_(1.)
self.sin_cached[:,:,2,:,:].fill_(0.)
return self.cos_cached, self.sin_cached
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(qkv, cos, sin):
cos = cos[0,:,0,0,:cos.shape[-1]//2]
sin = sin[0,:,0,0,:sin.shape[-1]//2]
return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
# function overload
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Layers #
#################################################################################
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.weight = nn.Parameter(torch.ones([dim]))
self.dim = dim
def forward(self, x):
with torch.cuda.amp.autocast(enabled=False):
x = F.layer_norm(x.float(), [self.dim])
return x * self.weight[None,None,:]
def residual_linear(x, W, x_skip, residual_scale):
"""x_skip + residual_scale * W @ x"""
dim_out, dim_in = W.shape[0], W.shape[1]
return torch.addmm(
x_skip.view(-1, dim_out),
x.view(-1, dim_in),
W.T,
alpha=residual_scale).view(*x.shape[:-1], dim_out)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True))
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
- math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding,
torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""Embeds class labels into vector representations.
Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, cond_size):
super().__init__()
self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
self.num_classes = num_classes
# TODO think of initializing with 0.02 std deviation like in original DiT paper
def forward(self, labels):
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Core Model #
#################################################################################
def regular_attention_multi_headed(qkv):
# Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
# where the 3 represents Q, K, V packed in that order
batch_size, seq_len, _, num_heads, head_dim = qkv.shape
# Separate Q, K, V from the packed qkv tensor
# [batch_size, seq_len, num_heads, head_dim]
q = qkv[:, :, 0, :, :]
k = qkv[:, :, 1, :, :]
v = qkv[:, :, 2, :, :]
# Transpose and reshape Q and K for batched matrix multiplication:
# [batch_size, num_heads, seq_len, head_dim]
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
# Compute scaled dot-product attention
# [batch_size, num_heads, seq_len, seq_len]
attention_scores = torch.matmul(
q, k.transpose(-2, -1)) / math.sqrt(head_dim)
# Apply softmax to calculate the attention weights
attention_probs = F.softmax(attention_scores, dim=-1)
# [batch_size, num_heads, seq_len, head_dim]
attention_output = torch.matmul(attention_probs, v)
# [batch_size, seq_len, num_heads, head_dim]
attention_output = attention_output.transpose(1, 2)
return einops.rearrange(attention_output,
'b s h d -> b s (h d)')
class DDiTBlock(nn.Module):
def __init__(self, dim, n_heads, cond_dim, mlp_ratio=4,
dropout=0.1, use_flash_attn=True):
super().__init__()
self.n_heads = n_heads
self.use_flash_attn = use_flash_attn
self.norm1 = LayerNorm(dim)
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
self.attn_out = nn.Linear(dim, dim, bias=False)
self.dropout1 = nn.Dropout(dropout)
self.norm2 = LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_ratio * dim, bias=True),
nn.GELU(approximate='tanh'),
nn.Linear(mlp_ratio * dim, dim, bias=True))
self.dropout2 = nn.Dropout(dropout)
self.dropout = dropout
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def forward(self, x, rotary_cos_sin, c, seqlens=None):
batch_size, seq_len = x.shape[0], x.shape[1]
bias_dropout_scale_fn = self._get_bias_dropout_scale()
(shift_msa, scale_msa, gate_msa, shift_mlp,
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
# attention operation
x_skip = x
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
qkv = self.attn_qkv(x)
qkv = einops.rearrange(
qkv,
'b s (three h d) -> b s three h d',
three=3,
h=self.n_heads)
with torch.cuda.amp.autocast(enabled=False):
cos, sin = rotary_cos_sin
qkv = apply_rotary_pos_emb(
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
if seqlens is None:
cu_seqlens = torch.arange(
0, (batch_size + 1) * seq_len, step=seq_len,
dtype=torch.int32, device=qkv.device)
else:
cu_seqlens = seqlens.cumsum(-1)
x = regular_attention_multi_headed(qkv)
x = bias_dropout_scale_fn(self.attn_out(x),
None,
gate_msa,
x_skip,
self.dropout)
# mlp operation
x = bias_dropout_scale_fn(
self.mlp(modulate_fused(
self.norm2(x), shift_mlp, scale_mlp)),
None, gate_mlp, x, self.dropout)
return x
class EmbeddingLayer(nn.Module):
def __init__(self, dim, vocab_dim):
super().__init__()
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
def forward(self, x):
return self.embedding[x]
class DDitFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, cond_dim):
super().__init__()
self.norm_final = LayerNorm(hidden_size)
self.linear = nn.Linear(hidden_size, out_channels)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaLN_modulation = nn.Linear(cond_dim,
2 * hidden_size,
bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = modulate_fused(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DITBackbone(nn.Module):
def __init__(
self,
config: MDLMConfig):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.vocab_embed = EmbeddingLayer(
config.hidden_dim,
config.vocab_size)
self.sigma_map = TimestepEmbedder(
config.cond_dim)
self.rotary_emb = Rotary(
config.hidden_dim // config.n_heads)
blocks = []
for _ in range(config.n_blocks):
blocks.append(DDiTBlock(config.hidden_dim,
config.n_heads,
config.cond_dim,
dropout=config.dropout))
self.blocks = nn.ModuleList(blocks)
self.output_layer = DDitFinalLayer(
config.hidden_dim,
config.vocab_size,
config.cond_dim)
self.precision = torch.float32
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def forward(self, indices, sigma,
output_hidden_states=False):
if not self.config.time_conditioning:
sigma = torch.zeros_like(sigma)
all_hidden_states = []
x = self.vocab_embed(indices)
if output_hidden_states:
all_hidden_states.append(x)
c = F.silu(self.sigma_map(sigma))
rotary_cos_sin = self.rotary_emb(x)
with torch.cuda.amp.autocast(dtype=self.precision):
for i in range(len(self.blocks)):
x = self.blocks[i](x, rotary_cos_sin, c,
seqlens=None)
if output_hidden_states:
all_hidden_states.append(x)
logits = self.output_layer(x, c)
return logits, all_hidden_states
class MDLM(transformers.PreTrainedModel):
"""HF-compatible model."""
config_class = MDLMConfig
base_model_prefix = "mdlm"
def __init__(
self,
config: MDLMConfig):
super().__init__(config)
self.backbone = DITBackbone(config)
def forward(
self,
input_ids: torch.LongTensor = None,
timesteps: torch.FloatTensor = None,
output_hidden_states: typing.Optional[bool] = None,
return_dict: typing.Optional[bool] = None,
) -> typing.Union[
torch.Tensor, typing.Tuple,
modeling_outputs.MaskedLMOutput]:
"""HF-compatible forward method."""
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict \
if return_dict is not None \
else self.config.use_return_dict
logits, all_hidden_states = self.backbone(
indices=input_ids,
sigma=timesteps,
output_hidden_states=output_hidden_states
)
if return_dict:
return modeling_outputs.MaskedLMOutput(
logits=logits,
hidden_states=all_hidden_states if output_hidden_states else None,
loss=None
)
elif output_hidden_states:
return logits, all_hidden_states
else:
return logits