yairschiff
commited on
Upload UDLM
Browse files- README.md +199 -0
- config.json +24 -0
- configuration_udlm.py +35 -0
- model.safetensors +3 -0
- modeling_udlm.py +486 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "kuleshov-group/udlm-lm1b",
|
3 |
+
"architectures": [
|
4 |
+
"UDLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_udlm.UDLMConfig",
|
8 |
+
"AutoModelForMaskedLM": "modeling_udlm.UDLM"
|
9 |
+
},
|
10 |
+
"cfg": false,
|
11 |
+
"cfg_num_classes": -1,
|
12 |
+
"cond_dim": 128,
|
13 |
+
"dropout": 0.1,
|
14 |
+
"hidden_dim": 768,
|
15 |
+
"model_length": 128,
|
16 |
+
"model_type": "udlm",
|
17 |
+
"n_blocks": 12,
|
18 |
+
"n_heads": 12,
|
19 |
+
"return_dict": false,
|
20 |
+
"time_conditioning": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.38.2",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
configuration_udlm.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""UDLM config for Hugging Face.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
|
8 |
+
class UDLMConfig(transformers.PretrainedConfig):
|
9 |
+
"""Hugging Face configuration class for UDLM."""
|
10 |
+
model_type = "udlm"
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
vocab_size: int = 30522, # `bert-base-uncased` vocab size
|
15 |
+
model_length: int = 128,
|
16 |
+
hidden_dim: int = 768,
|
17 |
+
cond_dim: int = 128,
|
18 |
+
n_blocks: int = 12,
|
19 |
+
n_heads: int = 12,
|
20 |
+
dropout: float = 0.1,
|
21 |
+
time_conditioning: bool = True,
|
22 |
+
cfg: bool = False, # Whether model is used for Classifier-Free Guidance (CFG)
|
23 |
+
cfg_num_classes: int = -1, # Number of classes for CFG (dummy value of -1 for no CFG)
|
24 |
+
** kwargs):
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
self.vocab_size = vocab_size
|
27 |
+
self.model_length = model_length
|
28 |
+
self.hidden_dim = hidden_dim
|
29 |
+
self.cond_dim = cond_dim
|
30 |
+
self.n_blocks = n_blocks
|
31 |
+
self.n_heads = n_heads
|
32 |
+
self.dropout = dropout
|
33 |
+
self.time_conditioning = time_conditioning
|
34 |
+
self.cfg = cfg
|
35 |
+
self.cfg_num_classes = cfg_num_classes
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:066245589f1e513300f3b0a6dcb253fdefbf6db3058c6b1e52918dec177dc189
|
3 |
+
size 557185800
|
modeling_udlm.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""UDLM model for Hugging Face.
|
2 |
+
|
3 |
+
"""
|
4 |
+
import math
|
5 |
+
import typing
|
6 |
+
|
7 |
+
import einops
|
8 |
+
import flash_attn
|
9 |
+
import flash_attn.layers.rotary
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import transformers
|
14 |
+
from transformers import modeling_outputs
|
15 |
+
|
16 |
+
from .configuration_udlm import UDLMConfig
|
17 |
+
|
18 |
+
# Flags required to enable jit fusion kernels
|
19 |
+
torch._C._jit_set_profiling_mode(False)
|
20 |
+
torch._C._jit_set_profiling_executor(False)
|
21 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
22 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
23 |
+
|
24 |
+
|
25 |
+
def bias_dropout_add_scale(
|
26 |
+
x: torch.Tensor,
|
27 |
+
bias: typing.Optional[torch.Tensor],
|
28 |
+
scale: torch.Tensor,
|
29 |
+
residual: typing.Optional[torch.Tensor],
|
30 |
+
prob: float,
|
31 |
+
training: bool) -> torch.Tensor:
|
32 |
+
if bias is not None:
|
33 |
+
out = scale * F.dropout(x + bias, p=prob, training=training)
|
34 |
+
else:
|
35 |
+
out = scale * F.dropout(x, p=prob, training=training)
|
36 |
+
|
37 |
+
if residual is not None:
|
38 |
+
out = residual + out
|
39 |
+
return out
|
40 |
+
|
41 |
+
|
42 |
+
def get_bias_dropout_add_scale(training):
|
43 |
+
def _bias_dropout_add(x, bias, scale, residual, prob):
|
44 |
+
return bias_dropout_add_scale(
|
45 |
+
x, bias, scale, residual, prob, training)
|
46 |
+
|
47 |
+
return _bias_dropout_add
|
48 |
+
|
49 |
+
|
50 |
+
# function overload
|
51 |
+
def modulate(x: torch.Tensor,
|
52 |
+
shift: torch.Tensor,
|
53 |
+
scale: torch.Tensor) -> torch.Tensor:
|
54 |
+
return x * (1 + scale) + shift
|
55 |
+
|
56 |
+
|
57 |
+
@torch.jit.script
|
58 |
+
def bias_dropout_add_scale_fused_train(
|
59 |
+
x: torch.Tensor,
|
60 |
+
bias: typing.Optional[torch.Tensor],
|
61 |
+
scale: torch.Tensor,
|
62 |
+
residual: typing.Optional[torch.Tensor],
|
63 |
+
prob: float) -> torch.Tensor:
|
64 |
+
return bias_dropout_add_scale(
|
65 |
+
x, bias, scale, residual, prob, True)
|
66 |
+
|
67 |
+
|
68 |
+
@torch.jit.script
|
69 |
+
def bias_dropout_add_scale_fused_inference(
|
70 |
+
x: torch.Tensor,
|
71 |
+
bias: typing.Optional[torch.Tensor],
|
72 |
+
scale: torch.Tensor,
|
73 |
+
residual: typing.Optional[torch.Tensor],
|
74 |
+
prob: float) -> torch.Tensor:
|
75 |
+
return bias_dropout_add_scale(
|
76 |
+
x, bias, scale, residual, prob, False)
|
77 |
+
|
78 |
+
|
79 |
+
@torch.jit.script
|
80 |
+
def modulate_fused(x: torch.Tensor,
|
81 |
+
shift: torch.Tensor,
|
82 |
+
scale: torch.Tensor) -> torch.Tensor:
|
83 |
+
return modulate(x, shift, scale)
|
84 |
+
|
85 |
+
|
86 |
+
class Rotary(torch.nn.Module):
|
87 |
+
def __init__(self, dim, base=10_000):
|
88 |
+
super().__init__()
|
89 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
90 |
+
self.register_buffer('inv_freq', inv_freq)
|
91 |
+
self.seq_len_cached = None
|
92 |
+
self.cos_cached = None
|
93 |
+
self.sin_cached = None
|
94 |
+
|
95 |
+
def forward(self, x, seq_dim=1):
|
96 |
+
seq_len = x.shape[seq_dim]
|
97 |
+
if seq_len != self.seq_len_cached:
|
98 |
+
self.seq_len_cached = seq_len
|
99 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
|
100 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
|
101 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
102 |
+
# dims are: batch, seq_len, qkv, head, dim
|
103 |
+
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
|
104 |
+
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
|
105 |
+
# This makes the transformation on v an identity.
|
106 |
+
self.cos_cached[:,:,2,:,:].fill_(1.)
|
107 |
+
self.sin_cached[:,:,2,:,:].fill_(0.)
|
108 |
+
|
109 |
+
return self.cos_cached, self.sin_cached
|
110 |
+
|
111 |
+
|
112 |
+
def rotate_half(x):
|
113 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
114 |
+
return torch.cat((-x2, x1), dim=-1)
|
115 |
+
|
116 |
+
|
117 |
+
def apply_rotary_pos_emb(qkv, cos, sin):
|
118 |
+
cos = cos[0,:,0,0,:cos.shape[-1]//2]
|
119 |
+
sin = sin[0,:,0,0,:sin.shape[-1]//2]
|
120 |
+
return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
|
121 |
+
|
122 |
+
|
123 |
+
# function overload
|
124 |
+
def modulate(x, shift, scale):
|
125 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
#################################################################################
|
129 |
+
# Layers #
|
130 |
+
#################################################################################
|
131 |
+
class LayerNorm(nn.Module):
|
132 |
+
def __init__(self, dim):
|
133 |
+
super().__init__()
|
134 |
+
self.weight = nn.Parameter(torch.ones([dim]))
|
135 |
+
self.dim = dim
|
136 |
+
def forward(self, x):
|
137 |
+
with torch.cuda.amp.autocast(enabled=False):
|
138 |
+
x = F.layer_norm(x.float(), [self.dim])
|
139 |
+
return x * self.weight[None,None,:]
|
140 |
+
|
141 |
+
|
142 |
+
def residual_linear(x, W, x_skip, residual_scale):
|
143 |
+
"""x_skip + residual_scale * W @ x"""
|
144 |
+
dim_out, dim_in = W.shape[0], W.shape[1]
|
145 |
+
return torch.addmm(
|
146 |
+
x_skip.view(-1, dim_out),
|
147 |
+
x.view(-1, dim_in),
|
148 |
+
W.T,
|
149 |
+
alpha=residual_scale).view(*x.shape[:-1], dim_out)
|
150 |
+
|
151 |
+
|
152 |
+
#################################################################################
|
153 |
+
# Embedding Layers for Timesteps and Class Labels #
|
154 |
+
#################################################################################
|
155 |
+
class TimestepEmbedder(nn.Module):
|
156 |
+
"""
|
157 |
+
Embeds scalar timesteps into vector representations.
|
158 |
+
"""
|
159 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
160 |
+
super().__init__()
|
161 |
+
self.mlp = nn.Sequential(
|
162 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
163 |
+
nn.SiLU(),
|
164 |
+
nn.Linear(hidden_size, hidden_size, bias=True))
|
165 |
+
self.frequency_embedding_size = frequency_embedding_size
|
166 |
+
|
167 |
+
@staticmethod
|
168 |
+
def timestep_embedding(t, dim, max_period=10000):
|
169 |
+
"""
|
170 |
+
Create sinusoidal timestep embeddings.
|
171 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
172 |
+
These may be fractional.
|
173 |
+
:param dim: the dimension of the output.
|
174 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
175 |
+
:return: an (N, D) Tensor of positional embeddings.
|
176 |
+
"""
|
177 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
178 |
+
half = dim // 2
|
179 |
+
freqs = torch.exp(
|
180 |
+
- math.log(max_period)
|
181 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
182 |
+
/ half).to(device=t.device)
|
183 |
+
args = t[:, None].float() * freqs[None]
|
184 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
185 |
+
if dim % 2:
|
186 |
+
embedding = torch.cat(
|
187 |
+
[embedding,
|
188 |
+
torch.zeros_like(embedding[:, :1])], dim=-1)
|
189 |
+
return embedding
|
190 |
+
|
191 |
+
def forward(self, t):
|
192 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
193 |
+
t_emb = self.mlp(t_freq)
|
194 |
+
return t_emb
|
195 |
+
|
196 |
+
|
197 |
+
class LabelEmbedder(nn.Module):
|
198 |
+
"""Embeds class labels into vector representations."""
|
199 |
+
def __init__(self, num_classes, cond_size):
|
200 |
+
super().__init__()
|
201 |
+
self.embedding_table = nn.Embedding(num_classes,
|
202 |
+
cond_size)
|
203 |
+
self.num_classes = num_classes
|
204 |
+
|
205 |
+
def forward(self, labels):
|
206 |
+
embeddings = self.embedding_table(labels)
|
207 |
+
return embeddings
|
208 |
+
|
209 |
+
|
210 |
+
#################################################################################
|
211 |
+
# Core Model #
|
212 |
+
#################################################################################
|
213 |
+
|
214 |
+
def regular_attention_multi_headed(qkv):
|
215 |
+
# Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
|
216 |
+
# where the 3 represents Q, K, V packed in that order
|
217 |
+
batch_size, seq_len, _, num_heads, head_dim = qkv.shape
|
218 |
+
# Separate Q, K, V from the packed qkv tensor
|
219 |
+
# [batch_size, seq_len, num_heads, head_dim]
|
220 |
+
q = qkv[:, :, 0, :, :]
|
221 |
+
k = qkv[:, :, 1, :, :]
|
222 |
+
v = qkv[:, :, 2, :, :]
|
223 |
+
|
224 |
+
# Transpose and reshape Q and K for batched matrix multiplication:
|
225 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
226 |
+
q = q.transpose(1, 2)
|
227 |
+
k = k.transpose(1, 2)
|
228 |
+
v = v.transpose(1, 2)
|
229 |
+
|
230 |
+
# Compute scaled dot-product attention
|
231 |
+
# [batch_size, num_heads, seq_len, seq_len]
|
232 |
+
attention_scores = torch.matmul(
|
233 |
+
q, k.transpose(-2, -1)) / math.sqrt(head_dim)
|
234 |
+
|
235 |
+
# Apply softmax to calculate the attention weights
|
236 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
237 |
+
|
238 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
239 |
+
attention_output = torch.matmul(attention_probs, v)
|
240 |
+
|
241 |
+
# [batch_size, seq_len, num_heads, head_dim]
|
242 |
+
attention_output = attention_output.transpose(1, 2)
|
243 |
+
return einops.rearrange(attention_output,
|
244 |
+
'b s h d -> b s (h d)')
|
245 |
+
|
246 |
+
|
247 |
+
class DDiTBlock(nn.Module):
|
248 |
+
def __init__(self, dim, n_heads, cond_dim, mlp_ratio=4,
|
249 |
+
dropout=0.1, use_flash_attn=True):
|
250 |
+
super().__init__()
|
251 |
+
self.n_heads = n_heads
|
252 |
+
self.use_flash_attn = use_flash_attn
|
253 |
+
|
254 |
+
self.norm1 = LayerNorm(dim)
|
255 |
+
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
|
256 |
+
self.attn_out = nn.Linear(dim, dim, bias=False)
|
257 |
+
self.dropout1 = nn.Dropout(dropout)
|
258 |
+
|
259 |
+
self.norm2 = LayerNorm(dim)
|
260 |
+
self.mlp = nn.Sequential(
|
261 |
+
nn.Linear(dim, mlp_ratio * dim, bias=True),
|
262 |
+
nn.GELU(approximate='tanh'),
|
263 |
+
nn.Linear(mlp_ratio * dim, dim, bias=True))
|
264 |
+
self.dropout2 = nn.Dropout(dropout)
|
265 |
+
self.dropout = dropout
|
266 |
+
|
267 |
+
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
|
268 |
+
self.adaLN_modulation.weight.data.zero_()
|
269 |
+
self.adaLN_modulation.bias.data.zero_()
|
270 |
+
|
271 |
+
|
272 |
+
def _get_bias_dropout_scale(self):
|
273 |
+
if self.training:
|
274 |
+
return bias_dropout_add_scale_fused_train
|
275 |
+
else:
|
276 |
+
return bias_dropout_add_scale_fused_inference
|
277 |
+
|
278 |
+
|
279 |
+
def forward(self, x, rotary_cos_sin, c, seqlens=None):
|
280 |
+
batch_size, seq_len = x.shape[0], x.shape[1]
|
281 |
+
|
282 |
+
bias_dropout_scale_fn = self._get_bias_dropout_scale()
|
283 |
+
|
284 |
+
(shift_msa, scale_msa, gate_msa, shift_mlp,
|
285 |
+
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
|
286 |
+
|
287 |
+
# attention operation
|
288 |
+
x_skip = x
|
289 |
+
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
|
290 |
+
|
291 |
+
qkv = self.attn_qkv(x)
|
292 |
+
qkv = einops.rearrange(
|
293 |
+
qkv,
|
294 |
+
'b s (three h d) -> b s three h d',
|
295 |
+
three=3,
|
296 |
+
h=self.n_heads)
|
297 |
+
with torch.cuda.amp.autocast(enabled=False):
|
298 |
+
cos, sin = rotary_cos_sin
|
299 |
+
qkv = apply_rotary_pos_emb(
|
300 |
+
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
|
301 |
+
if seqlens is None:
|
302 |
+
cu_seqlens = torch.arange(
|
303 |
+
0, (batch_size + 1) * seq_len, step=seq_len,
|
304 |
+
dtype=torch.int32, device=qkv.device)
|
305 |
+
else:
|
306 |
+
cu_seqlens = seqlens.cumsum(-1)
|
307 |
+
x = regular_attention_multi_headed(qkv)
|
308 |
+
|
309 |
+
x = bias_dropout_scale_fn(self.attn_out(x),
|
310 |
+
None,
|
311 |
+
gate_msa,
|
312 |
+
x_skip,
|
313 |
+
self.dropout)
|
314 |
+
|
315 |
+
# mlp operation
|
316 |
+
x = bias_dropout_scale_fn(
|
317 |
+
self.mlp(modulate_fused(
|
318 |
+
self.norm2(x), shift_mlp, scale_mlp)),
|
319 |
+
None, gate_mlp, x, self.dropout)
|
320 |
+
return x
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
class EmbeddingLayer(nn.Module):
|
325 |
+
def __init__(self, dim, vocab_dim):
|
326 |
+
super().__init__()
|
327 |
+
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
|
328 |
+
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
|
329 |
+
|
330 |
+
def forward(self, x):
|
331 |
+
return self.embedding[x]
|
332 |
+
|
333 |
+
|
334 |
+
class DDitFinalLayer(nn.Module):
|
335 |
+
def __init__(self, hidden_size, out_channels, cond_dim):
|
336 |
+
super().__init__()
|
337 |
+
self.norm_final = LayerNorm(hidden_size)
|
338 |
+
self.linear = nn.Linear(hidden_size, out_channels)
|
339 |
+
self.linear.weight.data.zero_()
|
340 |
+
self.linear.bias.data.zero_()
|
341 |
+
|
342 |
+
self.adaLN_modulation = nn.Linear(cond_dim,
|
343 |
+
2 * hidden_size,
|
344 |
+
bias=True)
|
345 |
+
self.adaLN_modulation.weight.data.zero_()
|
346 |
+
self.adaLN_modulation.bias.data.zero_()
|
347 |
+
|
348 |
+
|
349 |
+
def forward(self, x, c):
|
350 |
+
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
|
351 |
+
x = modulate_fused(self.norm_final(x), shift, scale)
|
352 |
+
x = self.linear(x)
|
353 |
+
return x
|
354 |
+
|
355 |
+
|
356 |
+
class DITBackbone(nn.Module):
|
357 |
+
def __init__(
|
358 |
+
self,
|
359 |
+
config: UDLMConfig):
|
360 |
+
super().__init__()
|
361 |
+
|
362 |
+
self.config = config
|
363 |
+
self.vocab_size = config.vocab_size
|
364 |
+
|
365 |
+
self.vocab_embed = EmbeddingLayer(
|
366 |
+
config.hidden_dim,
|
367 |
+
config.vocab_size)
|
368 |
+
self.sigma_map = TimestepEmbedder(
|
369 |
+
config.cond_dim)
|
370 |
+
if config.cfg:
|
371 |
+
self.cond_map = LabelEmbedder(
|
372 |
+
config.cfg_num_classes + 1, # +1 for mask
|
373 |
+
config.cond_dim)
|
374 |
+
else:
|
375 |
+
self.cond_map = None
|
376 |
+
self.rotary_emb = Rotary(
|
377 |
+
config.hidden_dim // config.n_heads)
|
378 |
+
|
379 |
+
blocks = []
|
380 |
+
for _ in range(config.n_blocks):
|
381 |
+
blocks.append(DDiTBlock(config.hidden_dim,
|
382 |
+
config.n_heads,
|
383 |
+
config.cond_dim,
|
384 |
+
dropout=config.dropout))
|
385 |
+
self.blocks = nn.ModuleList(blocks)
|
386 |
+
|
387 |
+
self.output_layer = DDitFinalLayer(
|
388 |
+
config.hidden_dim,
|
389 |
+
config.vocab_size,
|
390 |
+
config.cond_dim)
|
391 |
+
self.precision = torch.float32
|
392 |
+
|
393 |
+
def _get_bias_dropout_scale(self):
|
394 |
+
if self.training:
|
395 |
+
return bias_dropout_add_scale_fused_train
|
396 |
+
else:
|
397 |
+
return bias_dropout_add_scale_fused_inference
|
398 |
+
|
399 |
+
def forward(
|
400 |
+
self,
|
401 |
+
indices,
|
402 |
+
sigma,
|
403 |
+
cond=None,
|
404 |
+
x_emb=None,
|
405 |
+
output_hidden_states=False):
|
406 |
+
if not self.config.time_conditioning:
|
407 |
+
sigma = torch.zeros_like(sigma)
|
408 |
+
all_hidden_states = []
|
409 |
+
|
410 |
+
c = F.silu(self.sigma_map(sigma))
|
411 |
+
if cond is not None:
|
412 |
+
if self.cond_map is None:
|
413 |
+
raise ValueError("Conditioning variable provided, "
|
414 |
+
"but Model was not initialized "
|
415 |
+
"with condition embedding layer.")
|
416 |
+
else:
|
417 |
+
c = c + F.silu(self.cond_map(cond))
|
418 |
+
|
419 |
+
if x_emb is None:
|
420 |
+
x = self.vocab_embed(indices)
|
421 |
+
if output_hidden_states:
|
422 |
+
all_hidden_states.append(x)
|
423 |
+
|
424 |
+
rotary_cos_sin = self.rotary_emb(x)
|
425 |
+
|
426 |
+
with torch.cuda.amp.autocast(dtype=self.precision):
|
427 |
+
for i in range(len(self.blocks)):
|
428 |
+
x = self.blocks[i](x, rotary_cos_sin, c,
|
429 |
+
seqlens=None)
|
430 |
+
if output_hidden_states:
|
431 |
+
all_hidden_states.append(x)
|
432 |
+
else:
|
433 |
+
x = x_emb
|
434 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
435 |
+
logits = self.output_layer(x, c)
|
436 |
+
return logits, all_hidden_states
|
437 |
+
|
438 |
+
class UDLM(transformers.PreTrainedModel):
|
439 |
+
"""HF-compatible model."""
|
440 |
+
config_class = UDLMConfig
|
441 |
+
base_model_prefix = "udlm"
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
config: UDLMConfig):
|
446 |
+
super().__init__(config)
|
447 |
+
self.backbone = DITBackbone(config)
|
448 |
+
|
449 |
+
def forward(
|
450 |
+
self,
|
451 |
+
input_ids: torch.LongTensor = None,
|
452 |
+
timesteps: torch.FloatTensor = None,
|
453 |
+
cond: torch.LongTensor = None,
|
454 |
+
output_hidden_states: typing.Optional[bool] = None,
|
455 |
+
return_dict: typing.Optional[bool] = None,
|
456 |
+
**kwargs,
|
457 |
+
) -> typing.Union[
|
458 |
+
torch.Tensor, typing.Tuple,
|
459 |
+
modeling_outputs.MaskedLMOutput]:
|
460 |
+
"""HF-compatible forward method."""
|
461 |
+
output_hidden_states = (
|
462 |
+
output_hidden_states
|
463 |
+
if output_hidden_states is not None
|
464 |
+
else self.config.output_hidden_states
|
465 |
+
)
|
466 |
+
return_dict = return_dict \
|
467 |
+
if return_dict is not None \
|
468 |
+
else self.config.use_return_dict
|
469 |
+
|
470 |
+
logits, all_hidden_states = self.backbone(
|
471 |
+
indices=input_ids,
|
472 |
+
sigma=timesteps,
|
473 |
+
cond=cond,
|
474 |
+
output_hidden_states=output_hidden_states,
|
475 |
+
**kwargs,
|
476 |
+
)
|
477 |
+
if return_dict:
|
478 |
+
return modeling_outputs.MaskedLMOutput(
|
479 |
+
logits=logits,
|
480 |
+
hidden_states=all_hidden_states if output_hidden_states else None,
|
481 |
+
loss=None
|
482 |
+
)
|
483 |
+
elif output_hidden_states:
|
484 |
+
return logits, all_hidden_states
|
485 |
+
else:
|
486 |
+
return logits
|