Upload PPO LunarLander trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- suraj_lunar_lander.zip +3 -0
- suraj_lunar_lander/_stable_baselines3_version +1 -0
- suraj_lunar_lander/data +95 -0
- suraj_lunar_lander/policy.optimizer.pth +3 -0
- suraj_lunar_lander/policy.pth +3 -0
- suraj_lunar_lander/pytorch_variables.pth +3 -0
- suraj_lunar_lander/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.47 +/- 18.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ad61e8ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ad61e8f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ad61ed040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ad61ed0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f6ad61ed160>", "forward": "<function ActorCriticPolicy.forward at 0x7f6ad61ed1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ad61ed280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ad61ed310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6ad61ed3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ad61ed430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ad61ed4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ad61ed550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6ad61eabc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680504016203028518, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADkgzyobak/tu8lPVlHpb5J3CO48qkivgAAAAAAAAAAuhEVvhwBAD+zCkY+Xm2MvhZzpjwzgpA7AAAAAAAAAAAAi0Y9FOiyus6tKrNZoU2wsl33ubuTzjMAAIA/AACAP5qGhD1c33G61IYcOG1UFDP60/y65sM2twAAgD8AAAAAoJY3vrg8pDx2OXo93Z3TOx7eQb7aabk9AACAPwAAgD/tpWi+DDOQP/1ojr6LTtW+AVudvnHwpTsAAAAAAAAAAE0Bo70O2oW8Xamlu6xkRT0tIA27vrOCuwAAgD8AAIA/prIdPk/5Arzbpv66I1rLOI+RgL33lyM6AACAPwAAgD/TPgY+v/NpPyTulD3ul4i+C4+HPf7pQ70AAAAAAAAAANrcgj7Fg/c+JlsSvvOohL5dlws90Oj8vAAAAAAAAAAAJvPoPS/enz84g5w+0TvBvpVpDD48wg09AAAAAAAAAAAALXW9l7y0Pt7yQj6hkI6+lY8XPVtIWzwAAAAAAAAAAM3Pd733Rq8+nSEoPto6+L2Bjt084yKdPQAAAAAAAAAAps9CviQJQD8UbSs7xluSvveA4b0AGSo9AAAAAAAAAADzoSA+n3JiP7Bqqz1z8J2+lfJgPZvcUzoAAAAAAAAAACakYz7EAkA/iGb/PWo0p76PO0I+pGiBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZARUOAJycECUhpRSlIwBbJRNMwGMAXSUR0CVORdUbT+edX2UKGgGaAloD0MIxa7t7ZaLbkCUhpRSlGgVTToBaBZHQJU6ADEFW4p1fZQoaAZoCWgPQwhVaCCWzTFvQJSGlFKUaBVNdgFoFkdAlTohKtga33V9lChoBmgJaA9DCBU3bjG/cHFAlIaUUpRoFU1IAWgWR0CVOkonKGL2dX2UKGgGaAloD0MIKT4+ITusbkCUhpRSlGgVTSUBaBZHQJU7I3VCojx1fZQoaAZoCWgPQwj3zJIANT9xQJSGlFKUaBVNKAFoFkdAlTvrTQVsUXV9lChoBmgJaA9DCGN9A5NbZnBAlIaUUpRoFU1eAWgWR0CVPArYoRZmdX2UKGgGaAloD0MI422l12a9b0CUhpRSlGgVTTkBaBZHQJVTc7nxJ/Z1fZQoaAZoCWgPQwjtndFWpXRtQJSGlFKUaBVNMwFoFkdAlVZ84cWCVnV9lChoBmgJaA9DCFlS7j7HTHFAlIaUUpRoFU15AWgWR0CVVozyjHn2dX2UKGgGaAloD0MI4NbdPNVMb0CUhpRSlGgVTUABaBZHQJVaoQz1sch1fZQoaAZoCWgPQwhvoMA7Od5wQJSGlFKUaBVNmwFoFkdAlVrCXD3ueHV9lChoBmgJaA9DCIWYS6o2fXBAlIaUUpRoFU0/AWgWR0CVWuF2mpEQdX2UKGgGaAloD0MIT+j1JzGAcECUhpRSlGgVTVQBaBZHQJVbBd+ocaR1fZQoaAZoCWgPQwhNamgD8ENyQJSGlFKUaBVNXgFoFkdAlVtb+Lm6oXV9lChoBmgJaA9DCIielEkNqTVAlIaUUpRoFUv+aBZHQJVdH8l5WzZ1fZQoaAZoCWgPQwg6Pe/GAghvQJSGlFKUaBVNdwFoFkdAlV3aBVdX1nV9lChoBmgJaA9DCIDvNm/ccnFAlIaUUpRoFU1cAWgWR0CVXfcVgx8EdX2UKGgGaAloD0MI6X+5Fm2JcECUhpRSlGgVTVcBaBZHQJVd8rXlKbt1fZQoaAZoCWgPQwjnilJCMEdwQJSGlFKUaBVNkQFoFkdAlWAYRAbADnV9lChoBmgJaA9DCJur5jniT3BAlIaUUpRoFU11AWgWR0CVYDCP6sQvdX2UKGgGaAloD0MIrROX4xV/cECUhpRSlGgVTVYBaBZHQJVg82Ifr8l1fZQoaAZoCWgPQwgRjln2JKZvQJSGlFKUaBVNLgFoFkdAlWG0ygwoLHV9lChoBmgJaA9DCOdu10vTamNAlIaUUpRoFU3oA2gWR0CVYgsHjZL7dX2UKGgGaAloD0MIxT2WPnQYa0CUhpRSlGgVTYQBaBZHQJVkttrKvFF1fZQoaAZoCWgPQwgK2Xkbm0BuQJSGlFKUaBVNHQFoFkdAlWUGL5ylvnV9lChoBmgJaA9DCOup1VdXY21AlIaUUpRoFU0rAWgWR0CVZUmMfigkdX2UKGgGaAloD0MIIjXtYhq8cUCUhpRSlGgVTQsCaBZHQJVmaUr08Nh1fZQoaAZoCWgPQwiRnEzcqrJrQJSGlFKUaBVNVAFoFkdAlWayGWUr1HV9lChoBmgJaA9DCOpYpfSMt3BAlIaUUpRoFU1RAWgWR0CVZsy925hCdX2UKGgGaAloD0MI97AXCtgObkCUhpRSlGgVTSkBaBZHQJVoK/ATIvJ1fZQoaAZoCWgPQwh+bmjKzv9xQJSGlFKUaBVNNAFoFkdAlWiMWsRxtHV9lChoBmgJaA9DCM/AyMsaWm9AlIaUUpRoFU1PAWgWR0CVaU9tdiUgdX2UKGgGaAloD0MIRIts53s7cUCUhpRSlGgVTXUBaBZHQJVp8LORkmR1fZQoaAZoCWgPQwinWguzkLhwQJSGlFKUaBVNIAFoFkdAlWq+u7pV0nV9lChoBmgJaA9DCIi6D0CqaHFAlIaUUpRoFU1NAWgWR0CVa2jsD4gzdX2UKGgGaAloD0MI5rFmZBBwckCUhpRSlGgVTVwBaBZHQJVr0Jtzjm11fZQoaAZoCWgPQwgtCyb+qKttQJSGlFKUaBVNSQFoFkdAlWzdH2AXmHV9lChoBmgJaA9DCMrgKHn1TW1AlIaUUpRoFU1PAWgWR0CVbWqnWJ7+dX2UKGgGaAloD0MIzSA+sONjSUCUhpRSlGgVS/doFkdAlW5aUeMho3V9lChoBmgJaA9DCCHM7V4u4XFAlIaUUpRoFU08AWgWR0CVb7Elme18dX2UKGgGaAloD0MIzcggd5EuckCUhpRSlGgVTWEBaBZHQJVwf9l2/zt1fZQoaAZoCWgPQwgSaLCp8zVyQJSGlFKUaBVNFAFoFkdAlXFHAymALHV9lChoBmgJaA9DCG0bRkHwqnBAlIaUUpRoFU1xAWgWR0CVcWQ53kgfdX2UKGgGaAloD0MIBHKJI8/ecUCUhpRSlGgVTVIBaBZHQJVx9vR7Z391fZQoaAZoCWgPQwiGONbFrRlwQJSGlFKUaBVNkQFoFkdAlXQfk/8l5XV9lChoBmgJaA9DCJ4mM94W0XBAlIaUUpRoFU1uAWgWR0CVdPv7WNFSdX2UKGgGaAloD0MIlYEDWjqjcECUhpRSlGgVTUkBaBZHQJV1OoUBXCF1fZQoaAZoCWgPQwhqNLkYw4xxQJSGlFKUaBVNNQFoFkdAlXY0u6ErXnV9lChoBmgJaA9DCF1PdF34xm1AlIaUUpRoFU1ZAWgWR0CVdsXwLE1mdX2UKGgGaAloD0MIu16aIgAScUCUhpRSlGgVTTkBaBZHQJV2z7SApa11fZQoaAZoCWgPQwgB3gIJyvRwQJSGlFKUaBVNLAFoFkdAlXdwssg+yXV9lChoBmgJaA9DCKsi3GRUh0JAlIaUUpRoFUvlaBZHQJWPy89Oh011fZQoaAZoCWgPQwiAnZs2Y5duQJSGlFKUaBVNMQFoFkdAlZFIAKfFrHV9lChoBmgJaA9DCIQPJVryXD1AlIaUUpRoFU0QAWgWR0CVkkM36yjYdX2UKGgGaAloD0MIVisTfqlsb0CUhpRSlGgVTZEBaBZHQJWTlrqMWGh1fZQoaAZoCWgPQwg/yLJgotdwQJSGlFKUaBVNFQJoFkdAlZPAmeDnNnV9lChoBmgJaA9DCI5XIHrSrXBAlIaUUpRoFU1JAWgWR0CVlP0UGmk4dX2UKGgGaAloD0MIezGUE607cECUhpRSlGgVTVABaBZHQJWV+Q1aW5Z1fZQoaAZoCWgPQwg6z9iX7GZkQJSGlFKUaBVN6ANoFkdAlZYUQkHD8HV9lChoBmgJaA9DCObrMvyn43BAlIaUUpRoFU04AWgWR0CVmVl18stkdX2UKGgGaAloD0MIv7uVJbrecECUhpRSlGgVTXcBaBZHQJWZrgZTAFh1fZQoaAZoCWgPQwjIKM+83ARyQJSGlFKUaBVNPAFoFkdAlZorzf779HV9lChoBmgJaA9DCLHeqBVmYXBAlIaUUpRoFU1EAWgWR0CVmnkE9t/GdX2UKGgGaAloD0MIlddK6K6acECUhpRSlGgVTSUBaBZHQJWapOHnEEV1fZQoaAZoCWgPQwi8r8qFyh9wQJSGlFKUaBVNNwFoFkdAlZq7Motth3V9lChoBmgJaA9DCBADXfvCW3BAlIaUUpRoFU2CAWgWR0CVmyZcLSeAdX2UKGgGaAloD0MInwPLEXJfcUCUhpRSlGgVTfUBaBZHQJWbeY1He8B1fZQoaAZoCWgPQwjNWZ9yTLlsQJSGlFKUaBVNGQFoFkdAlZt5dv863nV9lChoBmgJaA9DCLVTc7mBHnFAlIaUUpRoFU22AWgWR0CVnGURWcSXdX2UKGgGaAloD0MIouwt5Xw2cUCUhpRSlGgVTTsBaBZHQJWdEpON5t51fZQoaAZoCWgPQwgzp8tiYjhyQJSGlFKUaBVNGwFoFkdAlZ1N6ol2NnV9lChoBmgJaA9DCKdAZmdR/nBAlIaUUpRoFU1CAWgWR0CVnjeq7yxzdX2UKGgGaAloD0MIL00R4PSDbkCUhpRSlGgVTSMBaBZHQJWfS2Dxsl91fZQoaAZoCWgPQwiGWP0Rhh9wQJSGlFKUaBVNCQFoFkdAlaFPQKKHf3V9lChoBmgJaA9DCGwjnuxmpnFAlIaUUpRoFU0ZAWgWR0CVoi8/D+BIdX2UKGgGaAloD0MIz9kCQuvPQUCUhpRSlGgVS/hoFkdAlaJo8dPtUnV9lChoBmgJaA9DCH7GhQOh321AlIaUUpRoFU0pAWgWR0CVo6pvxYq5dX2UKGgGaAloD0MIgJnv4KdWb0CUhpRSlGgVTS4BaBZHQJWj7rPdEb51fZQoaAZoCWgPQwiF7SdjfApsQJSGlFKUaBVNRgFoFkdAlaRQZXMhYHV9lChoBmgJaA9DCFD8GHPXjm1AlIaUUpRoFU01AWgWR0CVpPV4HHFQdX2UKGgGaAloD0MI/FWA77YGb0CUhpRSlGgVTe8BaBZHQJWlUoZydWh1fZQoaAZoCWgPQwjvGvSlN/pwQJSGlFKUaBVNKQFoFkdAlaW7s0HhTHV9lChoBmgJaA9DCGniHeDJznBAlIaUUpRoFU0QAWgWR0CVpcjnFHawdX2UKGgGaAloD0MIxJRIopfdb0CUhpRSlGgVTXEBaBZHQJWl767/XGx1fZQoaAZoCWgPQwiSzsDISxtxQJSGlFKUaBVNXQFoFkdAlaYrUCq6v3V9lChoBmgJaA9DCGajc36KWW5AlIaUUpRoFU0+AWgWR0CVpzRWtEG8dX2UKGgGaAloD0MIHuIftvR5cECUhpRSlGgVTScBaBZHQJWonu9eyAx1fZQoaAZoCWgPQwiJYBxcOqlwQJSGlFKUaBVNWwFoFkdAlakLpFCswXV9lChoBmgJaA9DCPOrOUDwpnBAlIaUUpRoFU1AAWgWR0CVq5/FirksdX2UKGgGaAloD0MIJzJzgcuicUCUhpRSlGgVTTcBaBZHQJWsN2/zreJ1fZQoaAZoCWgPQwjqW+Z0me5wQJSGlFKUaBVNBgFoFkdAlayKAJ9iMHV9lChoBmgJaA9DCFWEm4xq+HFAlIaUUpRoFU1YAWgWR0CVrbAG0NSZdX2UKGgGaAloD0MIYwtBDsq9cECUhpRSlGgVTSIBaBZHQJWuzMcIZ651fZQoaAZoCWgPQwhwI2WLZMlxQJSGlFKUaBVNWgFoFkdAla8bSy+pO3V9lChoBmgJaA9DCAXeyafHF25AlIaUUpRoFU1WAWgWR0CVrzj+717IdX2UKGgGaAloD0MIU1kUdpHScECUhpRSlGgVTRsBaBZHQJWvnN9ph4N1fZQoaAZoCWgPQwhJLCl3X2FxQJSGlFKUaBVNOQFoFkdAlbAbFwT/Q3V9lChoBmgJaA9DCAiOy7jpOnBAlIaUUpRoFU1CAWgWR0CVsFUUfxMGdX2UKGgGaAloD0MIRX9o5olAcUCUhpRSlGgVTWMBaBZHQJWwlid8Rcx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (226 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.47429791026997, "std_reward": 18.114012179213887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T07:07:59.227347"}
|
suraj_lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3ebbbb80ac53e3a143421f99d9d4bf9126296235ce60f828bff335990f03e34
|
3 |
+
size 147425
|
suraj_lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
suraj_lunar_lander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6ad61e8ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6ad61e8f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6ad61ed040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6ad61ed0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6ad61ed160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6ad61ed1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6ad61ed280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6ad61ed310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6ad61ed3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6ad61ed430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6ad61ed4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6ad61ed550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6ad61eabc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680504016203028518,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADkgzyobak/tu8lPVlHpb5J3CO48qkivgAAAAAAAAAAuhEVvhwBAD+zCkY+Xm2MvhZzpjwzgpA7AAAAAAAAAAAAi0Y9FOiyus6tKrNZoU2wsl33ubuTzjMAAIA/AACAP5qGhD1c33G61IYcOG1UFDP60/y65sM2twAAgD8AAAAAoJY3vrg8pDx2OXo93Z3TOx7eQb7aabk9AACAPwAAgD/tpWi+DDOQP/1ojr6LTtW+AVudvnHwpTsAAAAAAAAAAE0Bo70O2oW8Xamlu6xkRT0tIA27vrOCuwAAgD8AAIA/prIdPk/5Arzbpv66I1rLOI+RgL33lyM6AACAPwAAgD/TPgY+v/NpPyTulD3ul4i+C4+HPf7pQ70AAAAAAAAAANrcgj7Fg/c+JlsSvvOohL5dlws90Oj8vAAAAAAAAAAAJvPoPS/enz84g5w+0TvBvpVpDD48wg09AAAAAAAAAAAALXW9l7y0Pt7yQj6hkI6+lY8XPVtIWzwAAAAAAAAAAM3Pd733Rq8+nSEoPto6+L2Bjt084yKdPQAAAAAAAAAAps9CviQJQD8UbSs7xluSvveA4b0AGSo9AAAAAAAAAADzoSA+n3JiP7Bqqz1z8J2+lfJgPZvcUzoAAAAAAAAAACakYz7EAkA/iGb/PWo0p76PO0I+pGiBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZARUOAJycECUhpRSlIwBbJRNMwGMAXSUR0CVORdUbT+edX2UKGgGaAloD0MIxa7t7ZaLbkCUhpRSlGgVTToBaBZHQJU6ADEFW4p1fZQoaAZoCWgPQwhVaCCWzTFvQJSGlFKUaBVNdgFoFkdAlTohKtga33V9lChoBmgJaA9DCBU3bjG/cHFAlIaUUpRoFU1IAWgWR0CVOkonKGL2dX2UKGgGaAloD0MIKT4+ITusbkCUhpRSlGgVTSUBaBZHQJU7I3VCojx1fZQoaAZoCWgPQwj3zJIANT9xQJSGlFKUaBVNKAFoFkdAlTvrTQVsUXV9lChoBmgJaA9DCGN9A5NbZnBAlIaUUpRoFU1eAWgWR0CVPArYoRZmdX2UKGgGaAloD0MI422l12a9b0CUhpRSlGgVTTkBaBZHQJVTc7nxJ/Z1fZQoaAZoCWgPQwjtndFWpXRtQJSGlFKUaBVNMwFoFkdAlVZ84cWCVnV9lChoBmgJaA9DCFlS7j7HTHFAlIaUUpRoFU15AWgWR0CVVozyjHn2dX2UKGgGaAloD0MI4NbdPNVMb0CUhpRSlGgVTUABaBZHQJVaoQz1sch1fZQoaAZoCWgPQwhvoMA7Od5wQJSGlFKUaBVNmwFoFkdAlVrCXD3ueHV9lChoBmgJaA9DCIWYS6o2fXBAlIaUUpRoFU0/AWgWR0CVWuF2mpEQdX2UKGgGaAloD0MIT+j1JzGAcECUhpRSlGgVTVQBaBZHQJVbBd+ocaR1fZQoaAZoCWgPQwhNamgD8ENyQJSGlFKUaBVNXgFoFkdAlVtb+Lm6oXV9lChoBmgJaA9DCIielEkNqTVAlIaUUpRoFUv+aBZHQJVdH8l5WzZ1fZQoaAZoCWgPQwg6Pe/GAghvQJSGlFKUaBVNdwFoFkdAlV3aBVdX1nV9lChoBmgJaA9DCIDvNm/ccnFAlIaUUpRoFU1cAWgWR0CVXfcVgx8EdX2UKGgGaAloD0MI6X+5Fm2JcECUhpRSlGgVTVcBaBZHQJVd8rXlKbt1fZQoaAZoCWgPQwjnilJCMEdwQJSGlFKUaBVNkQFoFkdAlWAYRAbADnV9lChoBmgJaA9DCJur5jniT3BAlIaUUpRoFU11AWgWR0CVYDCP6sQvdX2UKGgGaAloD0MIrROX4xV/cECUhpRSlGgVTVYBaBZHQJVg82Ifr8l1fZQoaAZoCWgPQwgRjln2JKZvQJSGlFKUaBVNLgFoFkdAlWG0ygwoLHV9lChoBmgJaA9DCOdu10vTamNAlIaUUpRoFU3oA2gWR0CVYgsHjZL7dX2UKGgGaAloD0MIxT2WPnQYa0CUhpRSlGgVTYQBaBZHQJVkttrKvFF1fZQoaAZoCWgPQwgK2Xkbm0BuQJSGlFKUaBVNHQFoFkdAlWUGL5ylvnV9lChoBmgJaA9DCOup1VdXY21AlIaUUpRoFU0rAWgWR0CVZUmMfigkdX2UKGgGaAloD0MIIjXtYhq8cUCUhpRSlGgVTQsCaBZHQJVmaUr08Nh1fZQoaAZoCWgPQwiRnEzcqrJrQJSGlFKUaBVNVAFoFkdAlWayGWUr1HV9lChoBmgJaA9DCOpYpfSMt3BAlIaUUpRoFU1RAWgWR0CVZsy925hCdX2UKGgGaAloD0MI97AXCtgObkCUhpRSlGgVTSkBaBZHQJVoK/ATIvJ1fZQoaAZoCWgPQwh+bmjKzv9xQJSGlFKUaBVNNAFoFkdAlWiMWsRxtHV9lChoBmgJaA9DCM/AyMsaWm9AlIaUUpRoFU1PAWgWR0CVaU9tdiUgdX2UKGgGaAloD0MIRIts53s7cUCUhpRSlGgVTXUBaBZHQJVp8LORkmR1fZQoaAZoCWgPQwinWguzkLhwQJSGlFKUaBVNIAFoFkdAlWq+u7pV0nV9lChoBmgJaA9DCIi6D0CqaHFAlIaUUpRoFU1NAWgWR0CVa2jsD4gzdX2UKGgGaAloD0MI5rFmZBBwckCUhpRSlGgVTVwBaBZHQJVr0Jtzjm11fZQoaAZoCWgPQwgtCyb+qKttQJSGlFKUaBVNSQFoFkdAlWzdH2AXmHV9lChoBmgJaA9DCMrgKHn1TW1AlIaUUpRoFU1PAWgWR0CVbWqnWJ7+dX2UKGgGaAloD0MIzSA+sONjSUCUhpRSlGgVS/doFkdAlW5aUeMho3V9lChoBmgJaA9DCCHM7V4u4XFAlIaUUpRoFU08AWgWR0CVb7Elme18dX2UKGgGaAloD0MIzcggd5EuckCUhpRSlGgVTWEBaBZHQJVwf9l2/zt1fZQoaAZoCWgPQwgSaLCp8zVyQJSGlFKUaBVNFAFoFkdAlXFHAymALHV9lChoBmgJaA9DCG0bRkHwqnBAlIaUUpRoFU1xAWgWR0CVcWQ53kgfdX2UKGgGaAloD0MIBHKJI8/ecUCUhpRSlGgVTVIBaBZHQJVx9vR7Z391fZQoaAZoCWgPQwiGONbFrRlwQJSGlFKUaBVNkQFoFkdAlXQfk/8l5XV9lChoBmgJaA9DCJ4mM94W0XBAlIaUUpRoFU1uAWgWR0CVdPv7WNFSdX2UKGgGaAloD0MIlYEDWjqjcECUhpRSlGgVTUkBaBZHQJV1OoUBXCF1fZQoaAZoCWgPQwhqNLkYw4xxQJSGlFKUaBVNNQFoFkdAlXY0u6ErXnV9lChoBmgJaA9DCF1PdF34xm1AlIaUUpRoFU1ZAWgWR0CVdsXwLE1mdX2UKGgGaAloD0MIu16aIgAScUCUhpRSlGgVTTkBaBZHQJV2z7SApa11fZQoaAZoCWgPQwgB3gIJyvRwQJSGlFKUaBVNLAFoFkdAlXdwssg+yXV9lChoBmgJaA9DCKsi3GRUh0JAlIaUUpRoFUvlaBZHQJWPy89Oh011fZQoaAZoCWgPQwiAnZs2Y5duQJSGlFKUaBVNMQFoFkdAlZFIAKfFrHV9lChoBmgJaA9DCIQPJVryXD1AlIaUUpRoFU0QAWgWR0CVkkM36yjYdX2UKGgGaAloD0MIVisTfqlsb0CUhpRSlGgVTZEBaBZHQJWTlrqMWGh1fZQoaAZoCWgPQwg/yLJgotdwQJSGlFKUaBVNFQJoFkdAlZPAmeDnNnV9lChoBmgJaA9DCI5XIHrSrXBAlIaUUpRoFU1JAWgWR0CVlP0UGmk4dX2UKGgGaAloD0MIezGUE607cECUhpRSlGgVTVABaBZHQJWV+Q1aW5Z1fZQoaAZoCWgPQwg6z9iX7GZkQJSGlFKUaBVN6ANoFkdAlZYUQkHD8HV9lChoBmgJaA9DCObrMvyn43BAlIaUUpRoFU04AWgWR0CVmVl18stkdX2UKGgGaAloD0MIv7uVJbrecECUhpRSlGgVTXcBaBZHQJWZrgZTAFh1fZQoaAZoCWgPQwjIKM+83ARyQJSGlFKUaBVNPAFoFkdAlZorzf779HV9lChoBmgJaA9DCLHeqBVmYXBAlIaUUpRoFU1EAWgWR0CVmnkE9t/GdX2UKGgGaAloD0MIlddK6K6acECUhpRSlGgVTSUBaBZHQJWapOHnEEV1fZQoaAZoCWgPQwi8r8qFyh9wQJSGlFKUaBVNNwFoFkdAlZq7Motth3V9lChoBmgJaA9DCBADXfvCW3BAlIaUUpRoFU2CAWgWR0CVmyZcLSeAdX2UKGgGaAloD0MInwPLEXJfcUCUhpRSlGgVTfUBaBZHQJWbeY1He8B1fZQoaAZoCWgPQwjNWZ9yTLlsQJSGlFKUaBVNGQFoFkdAlZt5dv863nV9lChoBmgJaA9DCLVTc7mBHnFAlIaUUpRoFU22AWgWR0CVnGURWcSXdX2UKGgGaAloD0MIouwt5Xw2cUCUhpRSlGgVTTsBaBZHQJWdEpON5t51fZQoaAZoCWgPQwgzp8tiYjhyQJSGlFKUaBVNGwFoFkdAlZ1N6ol2NnV9lChoBmgJaA9DCKdAZmdR/nBAlIaUUpRoFU1CAWgWR0CVnjeq7yxzdX2UKGgGaAloD0MIL00R4PSDbkCUhpRSlGgVTSMBaBZHQJWfS2Dxsl91fZQoaAZoCWgPQwiGWP0Rhh9wQJSGlFKUaBVNCQFoFkdAlaFPQKKHf3V9lChoBmgJaA9DCGwjnuxmpnFAlIaUUpRoFU0ZAWgWR0CVoi8/D+BIdX2UKGgGaAloD0MIz9kCQuvPQUCUhpRSlGgVS/hoFkdAlaJo8dPtUnV9lChoBmgJaA9DCH7GhQOh321AlIaUUpRoFU0pAWgWR0CVo6pvxYq5dX2UKGgGaAloD0MIgJnv4KdWb0CUhpRSlGgVTS4BaBZHQJWj7rPdEb51fZQoaAZoCWgPQwiF7SdjfApsQJSGlFKUaBVNRgFoFkdAlaRQZXMhYHV9lChoBmgJaA9DCFD8GHPXjm1AlIaUUpRoFU01AWgWR0CVpPV4HHFQdX2UKGgGaAloD0MI/FWA77YGb0CUhpRSlGgVTe8BaBZHQJWlUoZydWh1fZQoaAZoCWgPQwjvGvSlN/pwQJSGlFKUaBVNKQFoFkdAlaW7s0HhTHV9lChoBmgJaA9DCGniHeDJznBAlIaUUpRoFU0QAWgWR0CVpcjnFHawdX2UKGgGaAloD0MIxJRIopfdb0CUhpRSlGgVTXEBaBZHQJWl767/XGx1fZQoaAZoCWgPQwiSzsDISxtxQJSGlFKUaBVNXQFoFkdAlaYrUCq6v3V9lChoBmgJaA9DCGajc36KWW5AlIaUUpRoFU0+AWgWR0CVpzRWtEG8dX2UKGgGaAloD0MIHuIftvR5cECUhpRSlGgVTScBaBZHQJWonu9eyAx1fZQoaAZoCWgPQwiJYBxcOqlwQJSGlFKUaBVNWwFoFkdAlakLpFCswXV9lChoBmgJaA9DCPOrOUDwpnBAlIaUUpRoFU1AAWgWR0CVq5/FirksdX2UKGgGaAloD0MIJzJzgcuicUCUhpRSlGgVTTcBaBZHQJWsN2/zreJ1fZQoaAZoCWgPQwjqW+Z0me5wQJSGlFKUaBVNBgFoFkdAlayKAJ9iMHV9lChoBmgJaA9DCFWEm4xq+HFAlIaUUpRoFU1YAWgWR0CVrbAG0NSZdX2UKGgGaAloD0MIYwtBDsq9cECUhpRSlGgVTSIBaBZHQJWuzMcIZ651fZQoaAZoCWgPQwhwI2WLZMlxQJSGlFKUaBVNWgFoFkdAla8bSy+pO3V9lChoBmgJaA9DCAXeyafHF25AlIaUUpRoFU1WAWgWR0CVrzj+717IdX2UKGgGaAloD0MIU1kUdpHScECUhpRSlGgVTRsBaBZHQJWvnN9ph4N1fZQoaAZoCWgPQwhJLCl3X2FxQJSGlFKUaBVNOQFoFkdAlbAbFwT/Q3V9lChoBmgJaA9DCAiOy7jpOnBAlIaUUpRoFU1CAWgWR0CVsFUUfxMGdX2UKGgGaAloD0MIRX9o5olAcUCUhpRSlGgVTWMBaBZHQJWwlid8Rcx1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
suraj_lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2872c05c48b47376be9bb2dd2b9953b0a32830da8f6714712b6dd0a6edb94777
|
3 |
+
size 87929
|
suraj_lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f46825285d4cc69d80f86fe5bd8b3440370e0cba9d0bb807e6b3b759697d1924
|
3 |
+
size 43393
|
suraj_lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
suraj_lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|