FT_DistilBERT / README.md
kumbi500's picture
Upload tokenizer
1c28e8d verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: distilbert-base-uncased
model-index:
  - name: FT_DistilBERT
    results: []

FT_DistilBERT

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2519
  • Accuracy: 0.8892
  • F1: 0.8892
  • Precision: 0.8904
  • Recall: 0.8900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3172 1.0 1000 0.2984 0.8745 0.8740 0.8772 0.8734
0.2419 2.0 2000 0.2519 0.8892 0.8892 0.8904 0.8900
0.2102 3.0 3000 0.2963 0.8955 0.8955 0.8960 0.8960
0.1679 4.0 4000 0.3012 0.9005 0.9004 0.9007 0.9002
0.1569 5.0 5000 0.3147 0.8958 0.8957 0.8958 0.8956

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2