--- license: apache-2.0 --- This BERT was fined-tuned on +672k tweets from twitter/X. The classification accuracy obtained is 98%. \ The number of labels is 3: {0: Negative, 1: Neutral, 2: Positive} This is an example to use it ```bash from transformers import AutoTokenizer from transformers import pipeline from transformers import AutoModelForSequenceClassification import torch checkpoint = 'kumo24/bert-sentiment' tokenizer=AutoTokenizer.from_pretrained(checkpoint) id2label = {0: "negative", 1: "neutral", 2: "positive"} label2id = {"negative": 0, "neutral": 1, "positive": 2} if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=3, id2label=id2label, label2id=label2id) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) sentiment_task = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device =device) print(sentiment_task("Michigan Wolverines are Champions, Go Blue!")) ```