File size: 1,469 Bytes
44f853d f61ed36 44f853d f61ed36 44f853d f61ed36 44f853d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
---
This MistralAI 7B was fined-tuned on nuclear energy data from twitter/X. The classification accuracy obtained is 94%. \
The number of labels is 3: {0: Negative, 1: Neutral, 2: Positive} \
Warning: You need sufficient GPU to run this model.
This is an example to use it, it worked on 8 GB Nvidia-RTX 4060
```bash
from transformers import AutoTokenizer
from transformers import pipeline
from transformers import AutoModelForSequenceClassification
import torch
checkpoint = 'kumo24/mistralai-sentiment-nuclear'
tokenizer=AutoTokenizer.from_pretrained(checkpoint)
id2label = {0: "negative", 1: "neutral", 2: "positive"}
label2id = {"negative": 0, "neutral": 1, "positive": 2}
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = AutoModelForSequenceClassification.from_pretrained(checkpoint,
num_labels=3,
id2label=id2label,
label2id=label2id,
device_map='auto')
sentiment_task = pipeline("sentiment-analysis",
model=model,
tokenizer=tokenizer)
print(sentiment_task("Michigan Wolverines are Champions, Go Blue!"))
``` |