File size: 22,623 Bytes
bcbb9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a163d
bcbb9ab
 
69a163d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcbb9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e8bfeb22-b42b-47cb-b3df-199864340445",
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset, DatasetDict\n",
    "from transformers import WhisperForConditionalGeneration\n",
    "from transformers import Seq2SeqTrainingArguments\n",
    "from transformers import Seq2SeqTrainer\n",
    "\n",
    "from transformers import WhisperTokenizer\n",
    "from transformers import WhisperFeatureExtractor\n",
    "from transformers import WhisperProcessor\n",
    "from datasets import Audio\n",
    "import evaluate\n",
    "\n",
    "import torch\n",
    "\n",
    "from dataclasses import dataclass\n",
    "from typing import Any, Dict, List, Union"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "37465609-e163-4fe8-8522-1711ed551af5",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset common_voice_11_0 (/home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f)\n",
      "Found cached dataset common_voice_11_0 (/home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "DatasetDict({\n",
      "    train: Dataset({\n",
      "        features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
      "        num_rows: 22\n",
      "    })\n",
      "    test: Dataset({\n",
      "        features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
      "        num_rows: 6\n",
      "    })\n",
      "})\n"
     ]
    }
   ],
   "source": [
    "common_voice = DatasetDict()\n",
    "\n",
    "common_voice[\"train\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"ml\", split=\"train[:5%]+validation\", use_auth_token=True)\n",
    "common_voice[\"test\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"ml\", split=\"test[:5%]\", use_auth_token=True)\n",
    "\n",
    "print(common_voice)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d940f0e6-8c51-47e4-929f-fcf8f91be3d6",
   "metadata": {},
   "outputs": [],
   "source": [
    "feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-tiny\")\n",
    "tokenizer = WhisperTokenizer.from_pretrained(\"openai/whisper-tiny\", language=\"Malayalam\", task=\"transcribe\")\n",
    "processor = WhisperProcessor.from_pretrained(\"openai/whisper-tiny\", language=\"Malayalam\", task=\"transcribe\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ddf259d2-1387-46f2-8964-b977576cc89b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'client_id': '29ca16eb2c0faea0be0ad73b5d826f5e81dc6fd4acfa9241a002b5d3619fd51c5b00b009e7b98b50caa5829f8a96697d5942b120749ee63a5d637c632bd0f7bc', 'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'audio': {'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'array': array([-5.9054565e-16, -5.8716256e-14, -5.4170010e-15, ...,\n",
      "        0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), 'sampling_rate': 48000}, 'sentence': 'എന്തുകൊണ്ട് യുവാക്കൾ കൂടുതൽ രാഷ്ട്രീയമായി ചിന്തിക്കണം, എന്തുകൊണ്ട് അവർ സംഘടിതരാകണം എന്നതിന്റെ ഉദാത്തമായ ഉദാഹരണമാകുന്നു കേരളം.', 'up_votes': 2, 'down_votes': 0, 'age': '', 'gender': '', 'accent': '', 'locale': 'ml', 'segment': ''}\n"
     ]
    }
   ],
   "source": [
    "print(common_voice[\"train\"][0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6018adab-f4ff-43c4-bb94-a70db7d78d91",
   "metadata": {},
   "outputs": [],
   "source": [
    "common_voice = common_voice.cast_column(\"audio\", Audio(sampling_rate=16000))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "1b435bee-3042-45f4-8451-b6a466a9ec98",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'client_id': '29ca16eb2c0faea0be0ad73b5d826f5e81dc6fd4acfa9241a002b5d3619fd51c5b00b009e7b98b50caa5829f8a96697d5942b120749ee63a5d637c632bd0f7bc', 'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'audio': {'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'array': array([-4.3097585e-14,  1.7633505e-13,  2.9013527e-13, ...,\n",
      "        0.0000000e+00,  0.0000000e+00,  0.0000000e+00], dtype=float32), 'sampling_rate': 16000}, 'sentence': 'എന്തുകൊണ്ട് യുവാക്കൾ കൂടുതൽ രാഷ്ട്രീയമായി ചിന്തിക്കണം, എന്തുകൊണ്ട് അവർ സംഘടിതരാകണം എന്നതിന്റെ ഉദാത്തമായ ഉദാഹരണമാകുന്നു കേരളം.', 'up_votes': 2, 'down_votes': 0, 'age': '', 'gender': '', 'accent': '', 'locale': 'ml', 'segment': ''}\n"
     ]
    }
   ],
   "source": [
    "print(common_voice[\"train\"][0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "0e4cc10e-3d90-4c27-9ccf-7a4fd6875353",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n",
    "\n",
    "do_lower_case = False\n",
    "do_remove_punctuation = True\n",
    "\n",
    "normalizer = BasicTextNormalizer()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "241a1504-c8fb-4322-bb53-fabaa01a607f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def prepare_dataset(batch):\n",
    "    # load and (possibly) resample audio data to 16kHz\n",
    "    audio = batch[\"audio\"]\n",
    "\n",
    "    # compute log-Mel input features from input audio array \n",
    "    batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
    "    # compute input length of audio sample in seconds\n",
    "    batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n",
    "    \n",
    "    # optional pre-processing steps\n",
    "    transcription = batch[\"sentence\"]\n",
    "    if do_lower_case:\n",
    "        transcription = transcription.lower()\n",
    "    if do_remove_punctuation:\n",
    "        transcription = normalizer(transcription).strip()\n",
    "    \n",
    "    # encode target text to label ids\n",
    "    batch[\"labels\"] = processor.tokenizer(transcription).input_ids\n",
    "    return batch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "e4059864-c622-4f80-99d3-3450fd852454",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at /home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f/cache-10c57a3e7cf91619.arrow\n",
      "Loading cached processed dataset at /home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f/cache-8adb63851a4a51f7.arrow\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 2.97 s, sys: 16 ms, total: 2.99 s\n",
      "Wall time: 2.99 s\n"
     ]
    }
   ],
   "source": [
    "%%time\n",
    "common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "9367d36e-5144-4d3e-ba56-0661e6124f34",
   "metadata": {},
   "outputs": [],
   "source": [
    "max_input_length = 30.0\n",
    "\n",
    "def is_audio_in_length_range(length):\n",
    "    return length < max_input_length"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "87f10bfa-8db2-4142-a4eb-fbae0c72acb3",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading cached processed dataset at /home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f/cache-153a5b29ef28024e.arrow\n"
     ]
    }
   ],
   "source": [
    "common_voice[\"train\"] = common_voice[\"train\"].filter(\n",
    "    is_audio_in_length_range,\n",
    "    input_columns=[\"input_length\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "0cafcf11-31cb-400e-a6c8-4968386770ed",
   "metadata": {},
   "outputs": [],
   "source": [
    "@dataclass\n",
    "class DataCollatorSpeechSeq2SeqWithPadding:\n",
    "    processor: Any\n",
    "\n",
    "    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
    "        # split inputs and labels since they have to be of different lengths and need different padding methods\n",
    "        # first treat the audio inputs by simply returning torch tensors\n",
    "        input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
    "        batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
    "\n",
    "        # get the tokenized label sequences\n",
    "        label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
    "        # pad the labels to max length\n",
    "        labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
    "\n",
    "        # replace padding with -100 to ignore loss correctly\n",
    "        labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
    "\n",
    "        # if bos token is appended in previous tokenization step,\n",
    "        # cut bos token here as it's append later anyways\n",
    "        if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
    "            labels = labels[:, 1:]\n",
    "\n",
    "        batch[\"labels\"] = labels\n",
    "\n",
    "        return batch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "8a44b772-a3f7-49bf-9c49-d204b83eae00",
   "metadata": {},
   "outputs": [],
   "source": [
    "data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "be5e492f-d37e-4548-ad4c-7375fb444d69",
   "metadata": {},
   "outputs": [],
   "source": [
    "import evaluate\n",
    "\n",
    "metric = evaluate.load(\"wer\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "eda340b8-663d-4596-9a86-f166ed0ba036",
   "metadata": {},
   "outputs": [],
   "source": [
    "# evaluate with the 'normalised' WER\n",
    "do_normalize_eval = True\n",
    "\n",
    "def compute_metrics(pred):\n",
    "    pred_ids = pred.predictions\n",
    "    label_ids = pred.label_ids\n",
    "\n",
    "    # replace -100 with the pad_token_id\n",
    "    label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n",
    "\n",
    "    # we do not want to group tokens when computing the metrics\n",
    "    pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
    "    label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
    "\n",
    "    if do_normalize_eval:\n",
    "        pred_str = [normalizer(pred) for pred in pred_str]\n",
    "        label_str = [normalizer(label) for label in label_str]\n",
    "\n",
    "    wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n",
    "\n",
    "    return {\"wer\": wer}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "f54bf70f-aa99-4353-b079-7eda0baabf4a",
   "metadata": {},
   "outputs": [],
   "source": [
    "model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-tiny\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "4e4ccefd-1069-4a76-9e1c-921364502959",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.config.forced_decoder_ids = None\n",
    "model.config.suppress_tokens = []\n",
    "model.config.use_cache = False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "b884bb51-99e8-4a60-8596-e9e8d954742a",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "PyTorch: setting up devices\n"
     ]
    }
   ],
   "source": [
    "training_args = Seq2SeqTrainingArguments(\n",
    "    output_dir=\"./\",\n",
    "    per_device_train_batch_size=64,\n",
    "    gradient_accumulation_steps=1,  # increase by 2x for every 2x decrease in batch size\n",
    "    learning_rate=1e-5,\n",
    "    warmup_steps=50,\n",
    "    max_steps=500,\n",
    "    gradient_checkpointing=True,\n",
    "    fp16=True,\n",
    "    evaluation_strategy=\"steps\",\n",
    "    per_device_eval_batch_size=8,\n",
    "    predict_with_generate=True,\n",
    "    generation_max_length=225,\n",
    "    save_steps=1000,\n",
    "    eval_steps=1000,\n",
    "    logging_steps=25,\n",
    "    report_to=[\"tensorboard\"],\n",
    "    load_best_model_at_end=True,\n",
    "    metric_for_best_model=\"wer\",\n",
    "    greater_is_better=False,\n",
    "    push_to_hub=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "c90ef090-4f16-4bc8-8c9c-6e3293c68917",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/whisper-ml-first-model/./ is already a clone of https://huggingface.co/kurianbenoy/whisper-ml-first-model. Make sure you pull the latest changes with `repo.git_pull()`.\n",
      "max_steps is given, it will override any value given in num_train_epochs\n",
      "Using cuda_amp half precision backend\n"
     ]
    }
   ],
   "source": [
    "trainer = Seq2SeqTrainer(\n",
    "    args=training_args,\n",
    "    model=model,\n",
    "    train_dataset=common_voice[\"train\"],\n",
    "    eval_dataset=common_voice[\"test\"],\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    "    tokenizer=processor.feature_extractor,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "50c03267-897f-497d-b11f-78ed16c80480",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Feature extractor saved in ./preprocessor_config.json\n",
      "tokenizer config file saved in ./tokenizer_config.json\n",
      "Special tokens file saved in ./special_tokens_map.json\n",
      "added tokens file saved in ./added_tokens.json\n"
     ]
    }
   ],
   "source": [
    "processor.save_pretrained(training_args.output_dir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "57c06b81-60f2-4c78-ab5f-7e1e1dac97c8",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`,  you can safely ignore this message.\n",
      "/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  warnings.warn(\n",
      "***** Running training *****\n",
      "  Num examples = 22\n",
      "  Num Epochs = 500\n",
      "  Instantaneous batch size per device = 64\n",
      "  Total train batch size (w. parallel, distributed & accumulation) = 64\n",
      "  Gradient Accumulation steps = 1\n",
      "  Total optimization steps = 500\n",
      "  Number of trainable parameters = 37760640\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='492' max='500' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [492/500 21:02 < 00:20, 0.39 it/s, Epoch 491/500]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Step</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "5bb6a481-af4a-4aa4-9238-b439c4929b8f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Saving model checkpoint to ./\n",
      "Configuration saved in ./config.json\n",
      "Model weights saved in ./pytorch_model.bin\n",
      "Feature extractor saved in ./preprocessor_config.json\n"
     ]
    },
    {
     "ename": "TypeError",
     "evalue": "create_model_card() got multiple values for keyword argument 'model_name'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "Input \u001b[0;32mIn [29]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m      2\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdataset_tags\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmozilla-foundation/common_voice_11_0\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m      3\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdataset\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCommon Voice 11.0\u001b[39m\u001b[38;5;124m\"\u001b[39m,  \u001b[38;5;66;03m# a 'pretty' name for the training dataset\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m      8\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwhisper-event\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m      9\u001b[0m }\n\u001b[0;32m---> 10\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/trainer.py:3457\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m   3455\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m   3456\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n\u001b[0;32m-> 3457\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_model_card(model_name\u001b[38;5;241m=\u001b[39mmodel_name, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m   3458\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m   3459\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrepo\u001b[38;5;241m.\u001b[39mpush_to_hub(\n\u001b[1;32m   3460\u001b[0m             commit_message\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mupdate model card README.md\u001b[39m\u001b[38;5;124m\"\u001b[39m, blocking\u001b[38;5;241m=\u001b[39mblocking, auto_lfs_prune\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m   3461\u001b[0m         )\n",
      "\u001b[0;31mTypeError\u001b[0m: create_model_card() got multiple values for keyword argument 'model_name'"
     ]
    }
   ],
   "source": [
    "kwargs = {\n",
    "    \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n",
    "    \"dataset\": \"Common Voice 11.0\",  # a 'pretty' name for the training dataset\n",
    "    \"language\": \"ml\",\n",
    "    \"model_name\": \"Whisper tiny ml - Kurian Benoy\",  # a 'pretty' name for your model\n",
    "    \"finetuned_from\": \"openai/whisper-tiny\",\n",
    "    \"tasks\": \"automatic-speech-recognition\",\n",
    "    \"tags\": \"whisper-event\",\n",
    "}\n",
    "trainer.push_to_hub(**kwargs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "89a7952d-5e2d-4cbd-960b-06421b7c967e",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}