File size: 22,623 Bytes
bcbb9ab 69a163d bcbb9ab 69a163d bcbb9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e8bfeb22-b42b-47cb-b3df-199864340445",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset, DatasetDict\n",
"from transformers import WhisperForConditionalGeneration\n",
"from transformers import Seq2SeqTrainingArguments\n",
"from transformers import Seq2SeqTrainer\n",
"\n",
"from transformers import WhisperTokenizer\n",
"from transformers import WhisperFeatureExtractor\n",
"from transformers import WhisperProcessor\n",
"from datasets import Audio\n",
"import evaluate\n",
"\n",
"import torch\n",
"\n",
"from dataclasses import dataclass\n",
"from typing import Any, Dict, List, Union"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "37465609-e163-4fe8-8522-1711ed551af5",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset common_voice_11_0 (/home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f)\n",
"Found cached dataset common_voice_11_0 (/home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
" num_rows: 22\n",
" })\n",
" test: Dataset({\n",
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
" num_rows: 6\n",
" })\n",
"})\n"
]
}
],
"source": [
"common_voice = DatasetDict()\n",
"\n",
"common_voice[\"train\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"ml\", split=\"train[:5%]+validation\", use_auth_token=True)\n",
"common_voice[\"test\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"ml\", split=\"test[:5%]\", use_auth_token=True)\n",
"\n",
"print(common_voice)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d940f0e6-8c51-47e4-929f-fcf8f91be3d6",
"metadata": {},
"outputs": [],
"source": [
"feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-tiny\")\n",
"tokenizer = WhisperTokenizer.from_pretrained(\"openai/whisper-tiny\", language=\"Malayalam\", task=\"transcribe\")\n",
"processor = WhisperProcessor.from_pretrained(\"openai/whisper-tiny\", language=\"Malayalam\", task=\"transcribe\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ddf259d2-1387-46f2-8964-b977576cc89b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'client_id': '29ca16eb2c0faea0be0ad73b5d826f5e81dc6fd4acfa9241a002b5d3619fd51c5b00b009e7b98b50caa5829f8a96697d5942b120749ee63a5d637c632bd0f7bc', 'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'audio': {'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'array': array([-5.9054565e-16, -5.8716256e-14, -5.4170010e-15, ...,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], dtype=float32), 'sampling_rate': 48000}, 'sentence': 'എന്തുകൊണ്ട് യുവാക്കൾ കൂടുതൽ രാഷ്ട്രീയമായി ചിന്തിക്കണം, എന്തുകൊണ്ട് അവർ സംഘടിതരാകണം എന്നതിന്റെ ഉദാത്തമായ ഉദാഹരണമാകുന്നു കേരളം.', 'up_votes': 2, 'down_votes': 0, 'age': '', 'gender': '', 'accent': '', 'locale': 'ml', 'segment': ''}\n"
]
}
],
"source": [
"print(common_voice[\"train\"][0])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6018adab-f4ff-43c4-bb94-a70db7d78d91",
"metadata": {},
"outputs": [],
"source": [
"common_voice = common_voice.cast_column(\"audio\", Audio(sampling_rate=16000))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1b435bee-3042-45f4-8451-b6a466a9ec98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'client_id': '29ca16eb2c0faea0be0ad73b5d826f5e81dc6fd4acfa9241a002b5d3619fd51c5b00b009e7b98b50caa5829f8a96697d5942b120749ee63a5d637c632bd0f7bc', 'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'audio': {'path': '/home/.cache/huggingface/datasets/downloads/extracted/5e6fee23ff6621c1021a557e4424852db80c5f277edb03408614c85e4831964c/common_voice_ml_28913601.mp3', 'array': array([-4.3097585e-14, 1.7633505e-13, 2.9013527e-13, ...,\n",
" 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], dtype=float32), 'sampling_rate': 16000}, 'sentence': 'എന്തുകൊണ്ട് യുവാക്കൾ കൂടുതൽ രാഷ്ട്രീയമായി ചിന്തിക്കണം, എന്തുകൊണ്ട് അവർ സംഘടിതരാകണം എന്നതിന്റെ ഉദാത്തമായ ഉദാഹരണമാകുന്നു കേരളം.', 'up_votes': 2, 'down_votes': 0, 'age': '', 'gender': '', 'accent': '', 'locale': 'ml', 'segment': ''}\n"
]
}
],
"source": [
"print(common_voice[\"train\"][0])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0e4cc10e-3d90-4c27-9ccf-7a4fd6875353",
"metadata": {},
"outputs": [],
"source": [
"from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n",
"\n",
"do_lower_case = False\n",
"do_remove_punctuation = True\n",
"\n",
"normalizer = BasicTextNormalizer()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "241a1504-c8fb-4322-bb53-fabaa01a607f",
"metadata": {},
"outputs": [],
"source": [
"def prepare_dataset(batch):\n",
" # load and (possibly) resample audio data to 16kHz\n",
" audio = batch[\"audio\"]\n",
"\n",
" # compute log-Mel input features from input audio array \n",
" batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
" # compute input length of audio sample in seconds\n",
" batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n",
" \n",
" # optional pre-processing steps\n",
" transcription = batch[\"sentence\"]\n",
" if do_lower_case:\n",
" transcription = transcription.lower()\n",
" if do_remove_punctuation:\n",
" transcription = normalizer(transcription).strip()\n",
" \n",
" # encode target text to label ids\n",
" batch[\"labels\"] = processor.tokenizer(transcription).input_ids\n",
" return batch"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e4059864-c622-4f80-99d3-3450fd852454",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading cached processed dataset at /home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f/cache-10c57a3e7cf91619.arrow\n",
"Loading cached processed dataset at /home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f/cache-8adb63851a4a51f7.arrow\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2.97 s, sys: 16 ms, total: 2.99 s\n",
"Wall time: 2.99 s\n"
]
}
],
"source": [
"%%time\n",
"common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=1)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9367d36e-5144-4d3e-ba56-0661e6124f34",
"metadata": {},
"outputs": [],
"source": [
"max_input_length = 30.0\n",
"\n",
"def is_audio_in_length_range(length):\n",
" return length < max_input_length"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "87f10bfa-8db2-4142-a4eb-fbae0c72acb3",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading cached processed dataset at /home/.cache/huggingface/datasets/mozilla-foundation___common_voice_11_0/ml/11.0.0/f8e47235d9b4e68fa24ed71d63266a02018ccf7194b2a8c9c598a5f3ab304d9f/cache-153a5b29ef28024e.arrow\n"
]
}
],
"source": [
"common_voice[\"train\"] = common_voice[\"train\"].filter(\n",
" is_audio_in_length_range,\n",
" input_columns=[\"input_length\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0cafcf11-31cb-400e-a6c8-4968386770ed",
"metadata": {},
"outputs": [],
"source": [
"@dataclass\n",
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
" processor: Any\n",
"\n",
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
" # split inputs and labels since they have to be of different lengths and need different padding methods\n",
" # first treat the audio inputs by simply returning torch tensors\n",
" input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
"\n",
" # get the tokenized label sequences\n",
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
" # pad the labels to max length\n",
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
"\n",
" # replace padding with -100 to ignore loss correctly\n",
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
"\n",
" # if bos token is appended in previous tokenization step,\n",
" # cut bos token here as it's append later anyways\n",
" if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
" labels = labels[:, 1:]\n",
"\n",
" batch[\"labels\"] = labels\n",
"\n",
" return batch"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "8a44b772-a3f7-49bf-9c49-d204b83eae00",
"metadata": {},
"outputs": [],
"source": [
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "be5e492f-d37e-4548-ad4c-7375fb444d69",
"metadata": {},
"outputs": [],
"source": [
"import evaluate\n",
"\n",
"metric = evaluate.load(\"wer\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "eda340b8-663d-4596-9a86-f166ed0ba036",
"metadata": {},
"outputs": [],
"source": [
"# evaluate with the 'normalised' WER\n",
"do_normalize_eval = True\n",
"\n",
"def compute_metrics(pred):\n",
" pred_ids = pred.predictions\n",
" label_ids = pred.label_ids\n",
"\n",
" # replace -100 with the pad_token_id\n",
" label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n",
"\n",
" # we do not want to group tokens when computing the metrics\n",
" pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
" label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
"\n",
" if do_normalize_eval:\n",
" pred_str = [normalizer(pred) for pred in pred_str]\n",
" label_str = [normalizer(label) for label in label_str]\n",
"\n",
" wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n",
"\n",
" return {\"wer\": wer}"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "f54bf70f-aa99-4353-b079-7eda0baabf4a",
"metadata": {},
"outputs": [],
"source": [
"model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-tiny\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4e4ccefd-1069-4a76-9e1c-921364502959",
"metadata": {},
"outputs": [],
"source": [
"model.config.forced_decoder_ids = None\n",
"model.config.suppress_tokens = []\n",
"model.config.use_cache = False"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "b884bb51-99e8-4a60-8596-e9e8d954742a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"PyTorch: setting up devices\n"
]
}
],
"source": [
"training_args = Seq2SeqTrainingArguments(\n",
" output_dir=\"./\",\n",
" per_device_train_batch_size=64,\n",
" gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n",
" learning_rate=1e-5,\n",
" warmup_steps=50,\n",
" max_steps=500,\n",
" gradient_checkpointing=True,\n",
" fp16=True,\n",
" evaluation_strategy=\"steps\",\n",
" per_device_eval_batch_size=8,\n",
" predict_with_generate=True,\n",
" generation_max_length=225,\n",
" save_steps=1000,\n",
" eval_steps=1000,\n",
" logging_steps=25,\n",
" report_to=[\"tensorboard\"],\n",
" load_best_model_at_end=True,\n",
" metric_for_best_model=\"wer\",\n",
" greater_is_better=False,\n",
" push_to_hub=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "c90ef090-4f16-4bc8-8c9c-6e3293c68917",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/whisper-ml-first-model/./ is already a clone of https://huggingface.co/kurianbenoy/whisper-ml-first-model. Make sure you pull the latest changes with `repo.git_pull()`.\n",
"max_steps is given, it will override any value given in num_train_epochs\n",
"Using cuda_amp half precision backend\n"
]
}
],
"source": [
"trainer = Seq2SeqTrainer(\n",
" args=training_args,\n",
" model=model,\n",
" train_dataset=common_voice[\"train\"],\n",
" eval_dataset=common_voice[\"test\"],\n",
" data_collator=data_collator,\n",
" compute_metrics=compute_metrics,\n",
" tokenizer=processor.feature_extractor,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "50c03267-897f-497d-b11f-78ed16c80480",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Feature extractor saved in ./preprocessor_config.json\n",
"tokenizer config file saved in ./tokenizer_config.json\n",
"Special tokens file saved in ./special_tokens_map.json\n",
"added tokens file saved in ./added_tokens.json\n"
]
}
],
"source": [
"processor.save_pretrained(training_args.output_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57c06b81-60f2-4c78-ab5f-7e1e1dac97c8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The following columns in the training set don't have a corresponding argument in `WhisperForConditionalGeneration.forward` and have been ignored: input_length. If input_length are not expected by `WhisperForConditionalGeneration.forward`, you can safely ignore this message.\n",
"/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n",
"***** Running training *****\n",
" Num examples = 22\n",
" Num Epochs = 500\n",
" Instantaneous batch size per device = 64\n",
" Total train batch size (w. parallel, distributed & accumulation) = 64\n",
" Gradient Accumulation steps = 1\n",
" Total optimization steps = 500\n",
" Number of trainable parameters = 37760640\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='492' max='500' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [492/500 21:02 < 00:20, 0.39 it/s, Epoch 491/500]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "5bb6a481-af4a-4aa4-9238-b439c4929b8f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Saving model checkpoint to ./\n",
"Configuration saved in ./config.json\n",
"Model weights saved in ./pytorch_model.bin\n",
"Feature extractor saved in ./preprocessor_config.json\n"
]
},
{
"ename": "TypeError",
"evalue": "create_model_card() got multiple values for keyword argument 'model_name'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [29]\u001b[0m, in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 2\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdataset_tags\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmozilla-foundation/common_voice_11_0\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 3\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdataset\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCommon Voice 11.0\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;66;03m# a 'pretty' name for the training dataset\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mwhisper-event\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 9\u001b[0m }\n\u001b[0;32m---> 10\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/conda/lib/python3.8/site-packages/transformers/trainer.py:3457\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 3455\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 3456\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n\u001b[0;32m-> 3457\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_model_card(model_name\u001b[38;5;241m=\u001b[39mmodel_name, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 3458\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 3459\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrepo\u001b[38;5;241m.\u001b[39mpush_to_hub(\n\u001b[1;32m 3460\u001b[0m commit_message\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mupdate model card README.md\u001b[39m\u001b[38;5;124m\"\u001b[39m, blocking\u001b[38;5;241m=\u001b[39mblocking, auto_lfs_prune\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 3461\u001b[0m )\n",
"\u001b[0;31mTypeError\u001b[0m: create_model_card() got multiple values for keyword argument 'model_name'"
]
}
],
"source": [
"kwargs = {\n",
" \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n",
" \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n",
" \"language\": \"ml\",\n",
" \"model_name\": \"Whisper tiny ml - Kurian Benoy\", # a 'pretty' name for your model\n",
" \"finetuned_from\": \"openai/whisper-tiny\",\n",
" \"tasks\": \"automatic-speech-recognition\",\n",
" \"tags\": \"whisper-event\",\n",
"}\n",
"trainer.push_to_hub(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "89a7952d-5e2d-4cbd-960b-06421b7c967e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|