{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"85ELTcct_p1L"},"outputs":[],"source":["import warnings\n","warnings.filterwarnings('ignore')\n","import os\n","import pandas as pd\n","import numpy as np\n","import sklearn"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dYapf89k_p1M"},"outputs":[],"source":["from sklearn.model_selection import train_test_split # To split the data into train and test sets\n","from sklearn.metrics import accuracy_score, recall_score # To compute error metrics\n","from sklearn.metrics import confusion_matrix\n","\n","from sklearn.tree import DecisionTreeClassifier # To build Decision tree model\n","from sklearn.ensemble import RandomForestClassifier # To build Random forest model\n","\n","from sklearn.model_selection import GridSearchCV # To perform Grid Search using CV\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","%matplotlib inline\n","\n","from scipy import stats\n"]},{"cell_type":"markdown","metadata":{"id":"4-EEfo74_p1N"},"source":["### Load the Data "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tmL4k9Tl_p1N"},"outputs":[],"source":["PATH = os.getcwd()\n","os.chdir(PATH)\n","data = pd.read_csv(\"Employee_Renege.csv\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VA1ZnlUe_p1P","outputId":"64d6a125-e73d-411f-a973-38a77876b17b"},"outputs":[{"data":{"text/plain":["(1999, 17)"]},"execution_count":4,"metadata":{},"output_type":"execute_result"}],"source":["# Check the data dimensions\n","data.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OvN6LSvF_p1Q","outputId":"9c886a18-8e87-4f4b-dc1a-d4f81291bf9f"},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
age
\n","
marital_status
\n","
education_level
\n","
gender
\n","
percent_hike
\n","
distance_from_home
\n","
sourcing_channel
\n","
total_rounds
\n","
date_1st_contact
\n","
date_offered
\n","
satisfaction_index
\n","
no_companies_worked
\n","
career_growth
\n","
flexi_work
\n","
total_experience
\n","
timely_communication
\n","
offer_dropped
\n","
\n"," \n"," \n","
\n","
0
\n","
29
\n","
married
\n","
Associate Certification
\n","
Female
\n","
27.0
\n","
<15 kms
\n","
Internal Referrals
\n","
8.0
\n","
5/12/2015
\n","
10/14/2015
\n","
24
\n","
3.0
\n","
Lateral
\n","
Yes
\n","
5
\n","
No
\n","
Yes
\n","
\n","
\n","
1
\n","
37
\n","
married
\n","
Associate Degree
\n","
Female
\n","
22.0
\n","
<15 kms
\n","
Consultants
\n","
8.0
\n","
3/9/2015
\n","
9/3/2015
\n","
20
\n","
8.0
\n","
Lateral
\n","
Yes
\n","
13
\n","
No
\n","
Yes
\n","
\n","
\n","
2
\n","
28
\n","
married
\n","
Associate Certification
\n","
Female
\n","
32.0
\n","
<15 kms
\n","
Internal Referrals
\n","
8.0
\n","
12/17/2015
\n","
5/22/2016
\n","
23
\n","
4.0
\n","
Lateral
\n","
Yes
\n","
4
\n","
No
\n","
Yes
\n","
\n","
\n","
3
\n","
44
\n","
married
\n","
Associate Certification
\n","
Female
\n","
27.0
\n","
> 20 kms
\n","
Job Portals
\n","
9.0
\n","
12/11/2015
\n","
6/7/2016
\n","
26
\n","
6.0
\n","
Lateral
\n","
Yes
\n","
20
\n","
No
\n","
Yes
\n","
\n","
\n","
4
\n","
32
\n","
married
\n","
Bachelor Degree
\n","
Female
\n","
28.0
\n","
15-20 kms
\n","
Company Website
\n","
3.0
\n","
2/13/2016
\n","
3/11/2016
\n","
53
\n","
8.0
\n","
Vertical
\n","
Yes
\n","
8
\n","
No
\n","
No
\n","
\n"," \n","
\n","
"],"text/plain":[" age marital_status education_level gender percent_hike \\\n","0 29 married Associate Certification Female 27.0 \n","1 37 married Associate Degree Female 22.0 \n","2 28 married Associate Certification Female 32.0 \n","3 44 married Associate Certification Female 27.0 \n","4 32 married Bachelor Degree Female 28.0 \n","\n"," distance_from_home sourcing_channel total_rounds date_1st_contact \\\n","0 <15 kms Internal Referrals 8.0 5/12/2015 \n","1 <15 kms Consultants 8.0 3/9/2015 \n","2 <15 kms Internal Referrals 8.0 12/17/2015 \n","3 > 20 kms Job Portals 9.0 12/11/2015 \n","4 15-20 kms Company Website 3.0 2/13/2016 \n","\n"," date_offered satisfaction_index no_companies_worked career_growth \\\n","0 10/14/2015 24 3.0 Lateral \n","1 9/3/2015 20 8.0 Lateral \n","2 5/22/2016 23 4.0 Lateral \n","3 6/7/2016 26 6.0 Lateral \n","4 3/11/2016 53 8.0 Vertical \n","\n"," flexi_work total_experience timely_communication offer_dropped \n","0 Yes 5 No Yes \n","1 Yes 13 No Yes \n","2 Yes 4 No Yes \n","3 Yes 20 No Yes \n","4 Yes 8 No No "]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["# Sample Data Check\n","data.head()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uOHb86oK_p1R","outputId":"d4c4fd7b-d4c1-4886-ec27-0b0f38dd345e"},"outputs":[{"data":{"text/plain":["age int64\n","marital_status object\n","education_level object\n","gender object\n","percent_hike float64\n","distance_from_home object\n","sourcing_channel object\n","total_rounds float64\n","date_1st_contact object\n","date_offered object\n","satisfaction_index int64\n","no_companies_worked float64\n","career_growth object\n","flexi_work object\n","total_experience int64\n","timely_communication object\n","offer_dropped object\n","dtype: object"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["# Checking the Data Types\n","data.dtypes"]},{"cell_type":"markdown","metadata":{"id":"OCQMSevI_p1R"},"source":["Let us calculate the percentage of employees who dropped the offer. This will give an idea on how challenging is to hire an employee."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"k-ITjCkf_p1S","outputId":"4ce5ae99-4066-4c8c-cb13-756a436e9398"},"outputs":[{"data":{"text/plain":["Yes 1024\n","No 975\n","Name: offer_dropped, dtype: int64"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["# Target Attribute \"offer_dropped\" frequency distribution\n","pd.value_counts(data[\"offer_dropped\"])"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"H4LG4EZI_p1S","outputId":"d229ac76-a1f4-449a-aba6-e6f40035061a"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.512256128064032\n"]}],"source":["offer_dropped_percentage = len(data[data[\"offer_dropped\"] == \"Yes\"])/len(data[\"offer_dropped\"])\n","print(offer_dropped_percentage)"]},{"cell_type":"markdown","metadata":{"id":"6K0RoTFZ_p1T"},"source":["Lets have a look at data and see if there are any discrepancies like any attribute missing for employee and also observe the summary statistics."]},{"cell_type":"code","execution_count":null,"metadata":{"scrolled":true,"id":"gTZwzufC_p1T","outputId":"78d93291-91f5-4045-dae7-55fd66aecb0b"},"outputs":[{"data":{"text/plain":["age 0\n","marital_status 0\n","education_level 0\n","gender 0\n","percent_hike 1\n","distance_from_home 0\n","sourcing_channel 1\n","total_rounds 2\n","date_1st_contact 0\n","date_offered 0\n","satisfaction_index 0\n","no_companies_worked 2\n","career_growth 0\n","flexi_work 0\n","total_experience 0\n","timely_communication 0\n","offer_dropped 0\n","dtype: int64"]},"execution_count":9,"metadata":{},"output_type":"execute_result"}],"source":["# Missing Value Check\n","data.isnull().sum()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rbkUoStv_p1U","outputId":"022ee1ea-a1ef-4492-b793-cf9d32d147e7"},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
age
\n","
marital_status
\n","
education_level
\n","
gender
\n","
percent_hike
\n","
distance_from_home
\n","
sourcing_channel
\n","
total_rounds
\n","
date_1st_contact
\n","
date_offered
\n","
satisfaction_index
\n","
no_companies_worked
\n","
career_growth
\n","
flexi_work
\n","
total_experience
\n","
timely_communication
\n","
offer_dropped
\n","
\n"," \n"," \n","
\n","
count
\n","
1999.000000
\n","
1999
\n","
1999
\n","
1999
\n","
1998.000000
\n","
1999
\n","
1998
\n","
1997.000000
\n","
1999
\n","
1999
\n","
1999.000000
\n","
1997.000000
\n","
1999
\n","
1999
\n","
1999.000000
\n","
1999
\n","
1999
\n","
\n","
\n","
unique
\n","
NaN
\n","
4
\n","
4
\n","
2
\n","
NaN
\n","
3
\n","
5
\n","
NaN
\n","
252
\n","
573
\n","
NaN
\n","
NaN
\n","
2
\n","
2
\n","
NaN
\n","
2
\n","
2
\n","
\n","
\n","
top
\n","
NaN
\n","
married
\n","
Associate Degree
\n","
Male
\n","
NaN
\n","
> 20 kms
\n","
Job Portals
\n","
NaN
\n","
3/31/2015
\n","
10/20/2015
\n","
NaN
\n","
NaN
\n","
Lateral
\n","
Yes
\n","
NaN
\n","
No
\n","
Yes
\n","
\n","
\n","
freq
\n","
NaN
\n","
1389
\n","
624
\n","
1517
\n","
NaN
\n","
781
\n","
486
\n","
NaN
\n","
54
\n","
9
\n","
NaN
\n","
NaN
\n","
1286
\n","
1177
\n","
NaN
\n","
1188
\n","
1024
\n","
\n","
\n","
mean
\n","
35.378189
\n","
NaN
\n","
NaN
\n","
NaN
\n","
21.103604
\n","
NaN
\n","
NaN
\n","
6.485228
\n","
NaN
\n","
NaN
\n","
40.383692
\n","
4.781673
\n","
NaN
\n","
NaN
\n","
11.103552
\n","
NaN
\n","
NaN
\n","
\n","
\n","
std
\n","
6.132589
\n","
NaN
\n","
NaN
\n","
NaN
\n","
8.932102
\n","
NaN
\n","
NaN
\n","
2.605184
\n","
NaN
\n","
NaN
\n","
23.485313
\n","
1.925830
\n","
NaN
\n","
NaN
\n","
6.057349
\n","
NaN
\n","
NaN
\n","
\n","
\n","
min
\n","
25.000000
\n","
NaN
\n","
NaN
\n","
NaN
\n","
10.000000
\n","
NaN
\n","
NaN
\n","
3.000000
\n","
NaN
\n","
NaN
\n","
15.000000
\n","
1.000000
\n","
NaN
\n","
NaN
\n","
1.000000
\n","
NaN
\n","
NaN
\n","
\n","
\n","
25%
\n","
30.000000
\n","
NaN
\n","
NaN
\n","
NaN
\n","
13.000000
\n","
NaN
\n","
NaN
\n","
4.000000
\n","
NaN
\n","
NaN
\n","
22.000000
\n","
3.000000
\n","
NaN
\n","
NaN
\n","
6.000000
\n","
NaN
\n","
NaN
\n","
\n","
\n","
50%
\n","
35.000000
\n","
NaN
\n","
NaN
\n","
NaN
\n","
19.000000
\n","
NaN
\n","
NaN
\n","
7.000000
\n","
NaN
\n","
NaN
\n","
29.000000
\n","
5.000000
\n","
NaN
\n","
NaN
\n","
11.000000
\n","
NaN
\n","
NaN
\n","
\n","
\n","
75%
\n","
41.000000
\n","
NaN
\n","
NaN
\n","
NaN
\n","
29.000000
\n","
NaN
\n","
NaN
\n","
9.000000
\n","
NaN
\n","
NaN
\n","
59.000000
\n","
6.000000
\n","
NaN
\n","
NaN
\n","
16.000000
\n","
NaN
\n","
NaN
\n","
\n","
\n","
max
\n","
46.000000
\n","
NaN
\n","
NaN
\n","
NaN
\n","
40.000000
\n","
NaN
\n","
NaN
\n","
10.000000
\n","
NaN
\n","
NaN
\n","
95.000000
\n","
8.000000
\n","
NaN
\n","
NaN
\n","
22.000000
\n","
NaN
\n","
NaN
\n","
\n"," \n","
\n","
"],"text/plain":[" age marital_status education_level gender percent_hike \\\n","count 1999.000000 1999 1999 1999 1998.000000 \n","unique NaN 4 4 2 NaN \n","top NaN married Associate Degree Male NaN \n","freq NaN 1389 624 1517 NaN \n","mean 35.378189 NaN NaN NaN 21.103604 \n","std 6.132589 NaN NaN NaN 8.932102 \n","min 25.000000 NaN NaN NaN 10.000000 \n","25% 30.000000 NaN NaN NaN 13.000000 \n","50% 35.000000 NaN NaN NaN 19.000000 \n","75% 41.000000 NaN NaN NaN 29.000000 \n","max 46.000000 NaN NaN NaN 40.000000 \n","\n"," distance_from_home sourcing_channel total_rounds date_1st_contact \\\n","count 1999 1998 1997.000000 1999 \n","unique 3 5 NaN 252 \n","top > 20 kms Job Portals NaN 3/31/2015 \n","freq 781 486 NaN 54 \n","mean NaN NaN 6.485228 NaN \n","std NaN NaN 2.605184 NaN \n","min NaN NaN 3.000000 NaN \n","25% NaN NaN 4.000000 NaN \n","50% NaN NaN 7.000000 NaN \n","75% NaN NaN 9.000000 NaN \n","max NaN NaN 10.000000 NaN \n","\n"," date_offered satisfaction_index no_companies_worked career_growth \\\n","count 1999 1999.000000 1997.000000 1999 \n","unique 573 NaN NaN 2 \n","top 10/20/2015 NaN NaN Lateral \n","freq 9 NaN NaN 1286 \n","mean NaN 40.383692 4.781673 NaN \n","std NaN 23.485313 1.925830 NaN \n","min NaN 15.000000 1.000000 NaN \n","25% NaN 22.000000 3.000000 NaN \n","50% NaN 29.000000 5.000000 NaN \n","75% NaN 59.000000 6.000000 NaN \n","max NaN 95.000000 8.000000 NaN \n","\n"," flexi_work total_experience timely_communication offer_dropped \n","count 1999 1999.000000 1999 1999 \n","unique 2 NaN 2 2 \n","top Yes NaN No Yes \n","freq 1177 NaN 1188 1024 \n","mean NaN 11.103552 NaN NaN \n","std NaN 6.057349 NaN NaN \n","min NaN 1.000000 NaN NaN \n","25% NaN 6.000000 NaN NaN \n","50% NaN 11.000000 NaN NaN \n","75% NaN 16.000000 NaN NaN \n","max NaN 22.000000 NaN NaN "]},"execution_count":10,"metadata":{},"output_type":"execute_result"}],"source":["# Data Summary Understanding before data type conversions\n","data.describe(include = 'all')"]},{"cell_type":"markdown","metadata":{"id":"k65-h9BN_p1U"},"source":["## Data Preprocessing "]},{"cell_type":"markdown","metadata":{"id":"qqyVpgk0_p1U"},"source":["### Data Type Conversions \n","\n","Before diving deep in to the data and understand the factors for __RENEGE__ and solve it lets do some data Pre-processing\n","When we read the data the date columns like date_offered, date_1st_contact and categorical columns like marital_status, education_level, gender etc... are read as Object in Pandas data frame.\n","Lets type cast them to appropriate types."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PpwcNgfk_p1V"},"outputs":[],"source":["# Convert variables to Date\n","cols = ['date_1st_contact','date_offered']\n","data[cols] = data[cols].apply(pd.to_datetime)\n"]},{"cell_type":"markdown","metadata":{"id":"95j5LMTh_p1V"},"source":["Checking data types after type casting"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pYUj4Ho8_p1W","outputId":"03f0a65b-2f91-44c8-e98e-f7f71a70db00"},"outputs":[{"data":{"text/plain":["age int64\n","marital_status object\n","education_level object\n","gender object\n","percent_hike float64\n","distance_from_home object\n","sourcing_channel object\n","total_rounds float64\n","date_1st_contact datetime64[ns]\n","date_offered datetime64[ns]\n","satisfaction_index int64\n","no_companies_worked float64\n","career_growth object\n","flexi_work object\n","total_experience int64\n","timely_communication object\n","offer_dropped object\n","dtype: object"]},"execution_count":12,"metadata":{},"output_type":"execute_result"}],"source":["data.dtypes"]},{"cell_type":"markdown","metadata":{"id":"9IypNzNN_p1W"},"source":["#### Convert all category variables and check"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4mQP1y5w_p1W"},"outputs":[],"source":["# Convert variables to Category\n","cat_cols = data.select_dtypes(include=['object']).columns\n","for col in cat_cols:\n"," data[col] = data[col].astype(\"category\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3Mltvap5_p1X","outputId":"c5099c34-1d90-4b73-80bd-9ce25ce1d4a3"},"outputs":[{"data":{"text/plain":["age int64\n","marital_status category\n","education_level category\n","gender category\n","percent_hike float64\n","distance_from_home category\n","sourcing_channel category\n","total_rounds float64\n","date_1st_contact datetime64[ns]\n","date_offered datetime64[ns]\n","satisfaction_index int64\n","no_companies_worked float64\n","career_growth category\n","flexi_work category\n","total_experience int64\n","timely_communication category\n","offer_dropped category\n","dtype: object"]},"execution_count":14,"metadata":{},"output_type":"execute_result"}],"source":["data.dtypes"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"A1iZIqg4_p1Y"},"outputs":[],"source":["data1 = data.dropna(axis = 0)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eWO6ArvI_p1Y","outputId":"c36a41da-e092-4bde-e849-62c5b2393356"},"outputs":[{"data":{"text/plain":["(1993, 17)"]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["data1.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_oJLuBP9_p1Z","outputId":"b00b137a-7849-4527-ff65-6d1493c722bd"},"outputs":[{"name":"stdout","output_type":"stream","text":["(1999, 17)\n"]}],"source":["print(data.shape)\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"njrDh0q9_p1Z","outputId":"843aa532-22ca-486a-f944-f87130c2f506"},"outputs":[{"data":{"text/plain":["age 0\n","marital_status 0\n","education_level 0\n","gender 0\n","percent_hike 1\n","distance_from_home 0\n","sourcing_channel 1\n","total_rounds 2\n","date_1st_contact 0\n","date_offered 0\n","satisfaction_index 0\n","no_companies_worked 2\n","career_growth 0\n","flexi_work 0\n","total_experience 0\n","timely_communication 0\n","offer_dropped 0\n","dtype: int64"]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["data.isnull().sum()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8i9SIlxs_p1b","outputId":"cf6ab790-c693-4ed4-e3fc-b35b04711d24"},"outputs":[{"name":"stdout","output_type":"stream","text":["Index(['age', 'percent_hike', 'total_rounds', 'satisfaction_index',\n"," 'no_companies_worked', 'total_experience'],\n"," dtype='object')\n"]},{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
marital_status
\n","
education_level
\n","
gender
\n","
distance_from_home
\n","
sourcing_channel
\n","
career_growth
\n","
flexi_work
\n","
timely_communication
\n","
offer_dropped
\n","
\n"," \n"," \n","
\n","
0
\n","
married
\n","
Associate Certification
\n","
Female
\n","
<15 kms
\n","
Internal Referrals
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
1
\n","
married
\n","
Associate Degree
\n","
Female
\n","
<15 kms
\n","
Consultants
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
2
\n","
married
\n","
Associate Certification
\n","
Female
\n","
<15 kms
\n","
Internal Referrals
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
3
\n","
married
\n","
Associate Certification
\n","
Female
\n","
> 20 kms
\n","
Job Portals
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
4
\n","
married
\n","
Bachelor Degree
\n","
Female
\n","
15-20 kms
\n","
Company Website
\n","
Vertical
\n","
Yes
\n","
No
\n","
No
\n","
\n"," \n","
\n","
"],"text/plain":[" marital_status education_level gender distance_from_home \\\n","0 married Associate Certification Female <15 kms \n","1 married Associate Degree Female <15 kms \n","2 married Associate Certification Female <15 kms \n","3 married Associate Certification Female > 20 kms \n","4 married Bachelor Degree Female 15-20 kms \n","\n"," sourcing_channel career_growth flexi_work timely_communication \\\n","0 Internal Referrals Lateral Yes No \n","1 Consultants Lateral Yes No \n","2 Internal Referrals Lateral Yes No \n","3 Job Portals Lateral Yes No \n","4 Company Website Vertical Yes No \n","\n"," offer_dropped \n","0 Yes \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No "]},"execution_count":20,"metadata":{},"output_type":"execute_result"}],"source":["num_cols = data.select_dtypes(include=['float64','int64'])\n","cat_cols = data.select_dtypes(include=['category'])\n","print(num_cols.columns) # print the numeric columns\n","cat_cols.head()"]},{"cell_type":"markdown","metadata":{"id":"EG8h58zP_p1b"},"source":["Missing values imputation\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7VQILOln_p1c","outputId":"683a591f-02b4-4d7f-a928-055646b61fde"},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
marital_status
\n","
education_level
\n","
gender
\n","
distance_from_home
\n","
sourcing_channel
\n","
career_growth
\n","
flexi_work
\n","
timely_communication
\n","
offer_dropped
\n","
\n"," \n"," \n","
\n","
0
\n","
married
\n","
Associate Certification
\n","
Female
\n","
<15 kms
\n","
Internal Referrals
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
1
\n","
married
\n","
Associate Degree
\n","
Female
\n","
<15 kms
\n","
Consultants
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
2
\n","
married
\n","
Associate Certification
\n","
Female
\n","
<15 kms
\n","
Internal Referrals
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
3
\n","
married
\n","
Associate Certification
\n","
Female
\n","
> 20 kms
\n","
Job Portals
\n","
Lateral
\n","
Yes
\n","
No
\n","
Yes
\n","
\n","
\n","
4
\n","
married
\n","
Bachelor Degree
\n","
Female
\n","
15-20 kms
\n","
Company Website
\n","
Vertical
\n","
Yes
\n","
No
\n","
No
\n","
\n"," \n","
\n","
"],"text/plain":[" marital_status education_level gender distance_from_home \\\n","0 married Associate Certification Female <15 kms \n","1 married Associate Degree Female <15 kms \n","2 married Associate Certification Female <15 kms \n","3 married Associate Certification Female > 20 kms \n","4 married Bachelor Degree Female 15-20 kms \n","\n"," sourcing_channel career_growth flexi_work timely_communication \\\n","0 Internal Referrals Lateral Yes No \n","1 Consultants Lateral Yes No \n","2 Internal Referrals Lateral Yes No \n","3 Job Portals Lateral Yes No \n","4 Company Website Vertical Yes No \n","\n"," offer_dropped \n","0 Yes \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No "]},"execution_count":21,"metadata":{},"output_type":"execute_result"}],"source":["from sklearn.impute import SimpleImputer\n","imp = SimpleImputer(missing_values=np.nan,strategy='mean')\n","num_data = pd.DataFrame(imp.fit_transform(num_cols),columns=num_cols.columns)\n","imp = SimpleImputer(missing_values=np.nan,strategy='most_frequent')\n","cat_data = pd.DataFrame(imp.fit_transform(cat_cols),columns=cat_cols.columns)\n","cat_data.head()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MvvGCFiV_p1c","outputId":"8cf841ca-1858-4b6a-ced0-67a3053215ae"},"outputs":[{"data":{"text/html":["
"],"text/plain":[" age percent_hike total_rounds satisfaction_index no_companies_worked \\\n","0 29.0 27.0 8.0 24.0 3.0 \n","1 37.0 22.0 8.0 20.0 8.0 \n","2 28.0 32.0 8.0 23.0 4.0 \n","3 44.0 27.0 9.0 26.0 6.0 \n","4 32.0 28.0 3.0 53.0 8.0 \n","\n"," total_experience marital_status education_level gender \\\n","0 5.0 married Associate Certification Female \n","1 13.0 married Associate Degree Female \n","2 4.0 married Associate Certification Female \n","3 20.0 married Associate Certification Female \n","4 8.0 married Bachelor Degree Female \n","\n"," distance_from_home sourcing_channel career_growth flexi_work \\\n","0 <15 kms Internal Referrals Lateral Yes \n","1 <15 kms Consultants Lateral Yes \n","2 <15 kms Internal Referrals Lateral Yes \n","3 > 20 kms Job Portals Lateral Yes \n","4 15-20 kms Company Website Vertical Yes \n","\n"," timely_communication offer_dropped date_1st_contact date_offered \n","0 No Yes 2015-05-12 2015-10-14 \n","1 No Yes 2015-03-09 2015-09-03 \n","2 No Yes 2015-12-17 2016-05-22 \n","3 No Yes 2015-12-11 2016-06-07 \n","4 No No 2016-02-13 2016-03-11 "]},"execution_count":24,"metadata":{},"output_type":"execute_result"}],"source":["data_final = pd.concat([num_data,cat_data,data.loc[:,[\"date_1st_contact\",\"date_offered\"]]],axis=1)\n","data_final.head(5)"]},{"cell_type":"markdown","metadata":{"id":"MlncGQMJ_p1f"},"source":["### Feature Engineering - New Variable Creation "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1pnOD_JZ_p1g"},"outputs":[],"source":["# Create job hopping index: jhi\n","\n","data_final[\"jhi\"] = data_final[\"total_experience\"]/data_final[\"no_companies_worked\"]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"d64gxS6A_p1g"},"outputs":[],"source":["# create days to offer: days_offered\n","\n","data_final[\"days_offered\"] = pd.to_datetime(data_final[\"date_offered\"],format='%m/%d/%Y') - pd.to_datetime(data_final[\"date_1st_contact\"],format='%m/%d/%Y')\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"UODsyOGz_p1h","outputId":"7c3b69d4-ddc0-400b-9717-f733aa3a1477"},"outputs":[{"data":{"text/plain":["0 155 days\n","1 178 days\n","2 157 days\n","3 179 days\n","4 27 days\n","Name: days_offered, dtype: timedelta64[ns]"]},"execution_count":28,"metadata":{},"output_type":"execute_result"}],"source":["data_final[\"days_offered\"].head()"]},{"cell_type":"markdown","metadata":{"id":"G-OHt_ed_p1h"},"source":["Days offered column data type is given as time delta. we need to convert it to integer"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"iii48NBx_p1i"},"outputs":[],"source":["data_final[\"days_offered\"] = np.int64(data_final[\"days_offered\"]/np.timedelta64(1,'D'))"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-mVgmMKR_p1i","outputId":"4e7d377a-915f-42d7-c381-f623e6f9ea8a"},"outputs":[{"data":{"text/plain":["0 155\n","1 178\n","2 157\n","3 179\n","4 27\n","Name: days_offered, dtype: int64"]},"execution_count":30,"metadata":{},"output_type":"execute_result"}],"source":["data_final[\"days_offered\"].head()"]},{"cell_type":"markdown","metadata":{"id":"dMQsoiJh_p1j"},"source":["Before further Analysis lets drop all the unnecessary attributes from the data set. This will help in reducing the computational over head and time with huge data sets. This is very important part of engineering"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"I0EYxEXQ_p1j","outputId":"21ef1f07-0ded-4df5-ce9e-539cfbe4a3af"},"outputs":[{"data":{"text/plain":["(1999, 17)"]},"execution_count":31,"metadata":{},"output_type":"execute_result"}],"source":["data.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dY2drM-g_p1j"},"outputs":[],"source":["# Remove original variables for avoiding redundancy : \"date_1st_contact\", \"date_offered\", \"no_companies_worked\", \"total_experience\"\n","# Remove variables you think are not possible to collect : \"satisfaction_index\"\n","data_final=data_final.loc[:,data_final.columns.difference([\"date_1st_contact\",\"date_offered\",\"no_companies_worked\",\"total_experience\",\"satisfaction_index\"])]\n","\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kmnq6LuY_p1k","outputId":"74b4cfb0-6ed5-4d7e-ab83-a3533a3014a2"},"outputs":[{"data":{"text/plain":["(1999, 14)"]},"execution_count":33,"metadata":{},"output_type":"execute_result"}],"source":["\n","data_final.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HKFc67sY_p1k"},"outputs":[],"source":["data = data_final.copy()"]},{"cell_type":"markdown","metadata":{"id":"Jm_18z5V_p1k"},"source":["## Exploratory Data Analysis"]},{"cell_type":"markdown","metadata":{"id":"id0D98Gt_p1l"},"source":["### Univariate Analysis\n","\n","Univariate analysis is perhaps the simplest form of statistical analysis. Like other forms of statistics, it can be inferential or descriptive. The key fact is that only one variable is involved.\n","\n","We will start with categorical variables"]},{"cell_type":"markdown","metadata":{"id":"1xbHlmpI_p1m"},"source":["#### Marital Status - Visual approach "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4tZPhC6K_p1m","outputId":"daa9a669-a16e-46be-ab15-1b8a1b9b1288"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAmwAAAFwCAYAAAAFaSdYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deVyVdcL///dhV8ESPaChaYlbUKJpLhSWG4syJebcCo3ZpjnWKI06bl8oLW3M22Vs7FbH2+Z2QqUidczAKdJyw+VRbqGigYELHMQFUNZzfn/048yQlVjCuZDX8x+5rnMdr7d0dZ33+VybyWaz2QQAAADDcnJ0AAAAAPw8ChsAAIDBUdgAAAAMjsIGAABgcBQ2AAAAg6OwAQAAGByFDQAAwOAobAAanCVLlmjDhg2SpLfffluffvrpDd/TqVMnFRQU/KL1bdu2TUuWLLllywFoeFwcHQAA6trEiRPtP6elpcnf379W13f48GFdvnz5li0HoOGhsAEwvLS0NC1cuFCtWrVSZmamGjVqpLFjx2rNmjXKzMzU4MGDNW3aNM2dO1cHDx5UcXGxbDabXn/9dT344IOaNm2aLl26pOzsbD366KO6cOGCOnToIA8PDx05ckTz58+Xs7Oz/P39NXv2bBUXF8tisahz585avHix3N3da5Rz69ateuedd2QymeTs7KypU6fKzc1N69atU2Vlpby8vDRu3Di9+uqrOn36tC5duqQmTZpowYIFKiwsrLZc27ZtlZKSouXLl0uSkpKS7NP79+/Xm2++KavVKkkaN26cQkNDa+33D8DxOCQKoF44fPiwxo4dq40bN8rT01MrVqzQ8uXLlZSUpISEBH311VfKy8vT+vXrtWXLFg0bNkwrV660v7+kpEQff/yxpkyZYp8XExOjwMBATZ06VYMGDVJiYqKeeOIJJSYmauvWrcrJydG2bdtqnHH+/PmKj49XUlKSJk6cqLS0NHXt2lUjR45URESEYmNj9cUXX6hp06Zav369UlJSFBgYqPfee++65X7O0qVL9cwzzygpKUlz587Vnj17bvr3CaB+YYQNQL3QunVr3XfffZKku+++W15eXnJzc5O3t7eaNGkiLy8vTZo0SevWrVN2drbS0tLUpEkT+/sffPDBG65jypQp2rlzp1auXKmsrCzl5eXp6tWrNc44ZMgQvfTSS+rXr5+Cg4P1wgsvXLdMWFiY2rRpozVr1uj06dPau3evunXrVuN1SFJ4eLhmz56t1NRU9e3bV6+88spNvR9A/cMIG4B6wc3Nrdq0i0v175u7d+/WuHHjJEkDBgzQqFGjqr3euHHjG67jlVdeUWJiovz8/DRmzBgFBATIZrPVOGNsbKwSEhIUGBiopKQkxcTEXLdMQkKCZs6cKQ8PD0VGRmro0KE/ug6TyVRtfnl5uf3nkSNHatOmTQoODtaOHTv0m9/8RqWlpTXOCaD+obABuC18/vnneuyxxxQdHa3AwEB9+umnqqysvOH7nJ2dVVFRIUnasWOHJkyYoIiICEnSwYMHa/R3SFJFRYX69++va9euadSoUYqPj9fx48dVVlZ23TqGDRumESNG6J577lFqaqp9Hf+5nLe3tzIyMlRaWqry8nKlpKTY1zVy5Eilp6crKipKc+bM0ZUrV2SxWGr+ywJQ73BIFMBtYcaMGZo6daoiIyNVUVGh4OBgbd261X5i/k/p37+/Fi5cqPLycsXGxmrChAlq3LixPD091bNnT3333Xc1Wr+Li4tmzJihyZMny8XFRSaTSXPnzpWbm5t69+6tyZMna86cOXr22WcVFxenDz74QJIUFBSkEydOSFK15aZPn66ePXsqPDxcZrNZvXr10vHjxyVJkydP1ty5c7V48WKZTCa99NJLat269a/47QEwOpPtZsb7AQAAUOcYYQOAGtqzZ4/mzZv3o6/16tVLM2bMqONEABoKRtgAAAAMjosOAAAADI7CBgAAYHC3/TlsFy8Wy2rlqC8AADAuJyeTmjVr8pOv3/aFzWq1UdgAAEC9xiFRAAAAg6OwAQAAGByFDQAAwOAobAAAAAZHYQMAADC4Wi1sRUVFGjp0qHJycqrN/8c//qHf/e539umzZ88qJiZGYWFhGj9+vIqLiyVJV65c0dixYxUeHq6YmBhZLJbajAsAAGBItVbYDh48qFGjRikrK6va/JMnT2rFihXV5r322muKjo5WcnKyAgMDtWzZMknS4sWL1aNHD33yyScaMWKE3njjjdqKCwAAYFi1VtgSExMVHx8vHx8f+7yysjLFxcXpD3/4g31eeXm59u3bp9DQUElSVFSUkpOTJUnbtm1TZGSkJGno0KH64osvVF5eXluRAQAADKnWbpz7Y6Nh//3f/63hw4erdevW9nkXL16Up6enXFy+j2I2m5WbmytJysvLk9ls/j6oi4s8PT1VUFAgX1/fGudo3tzz1/wzAAAAHK7OnnSwc+dOnTt3TtOnT1daWpp9vs1mk8lkqrbsD6f/c1knp5sbFLxwoYgnHQAAAENzcjL97CBTnRW2zZs3KyMjQ48//riuXr2q/Px8TZo0SW+99ZYKCwtVWVkpZ2dnWSwW+2FUHx8f5efnq2XLlqqoqFBxcbHuvPPOWs/q1dRDHu6utb4e1I6S0nIVXilxdAwAAG6ZOits8+bNs/+clpamt99+W4sXL5Yk9ejRQ1u2bFFkZKQ2bNigkJAQSVK/fv20YcMGvfjii9qyZYt69OghV9faL1Ie7q6Knvpera8HtSNhfowKRWEDANw+DHEftvj4eCUmJioiIkL79+/XpEmTJEkTJ07U119/rSFDhighIUFxcXEOTgoAAFD3TDab7bY+weuXnMNmNnsxwlaPJcyPkcVS6OgYAADU2I3OYTPECBsAAAB+GoUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMLhaL2xFRUUaOnSocnJyJEnr16/X0KFDFRkZqenTp6usrEySlJ6erqioKIWGhmrmzJmqqKiQJJ09e1YxMTEKCwvT+PHjVVxcXNuRAQAADKVWC9vBgwc1atQoZWVlSZIyMzO1atUqrVu3Tps2bZLValVCQoIkacqUKYqLi1NKSopsNpsSExMlSa+99pqio6OVnJyswMBALVu2rDYjAwAAGE6tFrbExETFx8fLx8dHkuTm5qb4+Hh5enrKZDKpY8eOOnv2rM6cOaOSkhIFBQVJkqKiopScnKzy8nLt27dPoaGh1eYDAAA0JC61+Ze/8cYb1ab9/Pzk5+cnSSooKNB7772nefPmKS8vT2az2b6c2WxWbm6uLl68KE9PT7m4uFSbfzOaN/f8lf8K1Edms5ejIwAAcMvUamH7Kbm5uXr++ec1fPhw9erVSwcOHJDJZLK/brPZZDKZ7H/+px9O38iFC0WyWm039R4+7Os/i6XQ0REAAKgxJyfTzw4y1flVoqdOndLIkSM1bNgwTZgwQZLUsmVLWSwW+zL5+fny8fGRt7e3CgsLVVlZKUmyWCz2w6sAAAANRZ0WtqKiIj333HOaOHGinn32Wft8Pz8/ubu768CBA5KkjRs3KiQkRK6ururRo4e2bNkiSdqwYYNCQkLqMjIAAIDD1Wlh++CDD5Sfn6/Vq1fr8ccf1+OPP64lS5ZIkhYsWKB58+YpLCxMV69e1ejRoyVJ8fHxSkxMVEREhPbv369JkybVZWQAAACHM9lstps7waue+aXnsEVPfa+WEqG2JcyP4Rw2AEC9Yrhz2AAAAHBzKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADI7CBgAAYHAUNgAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADI7CBgAAYHAUNgAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADI7CBgAAYHAUNgAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADK7WC1tRUZGGDh2qnJwcSdKuXbsUGRmpwYMHa9GiRfbl0tPTFRUVpdDQUM2cOVMVFRWSpLNnzyomJkZhYWEaP368iouLazsyAACAodRqYTt48KBGjRqlrKwsSVJJSYlmzJihZcuWacuWLTpy5Ii2b98uSZoyZYri4uKUkpIim82mxMRESdJrr72m6OhoJScnKzAwUMuWLavNyAAAAIZTq4UtMTFR8fHx8vHxkSQdOnRIbdu2VZs2beTi4qLIyEglJyfrzJkzKikpUVBQkCQpKipKycnJKi8v1759+xQaGlptPgAAQEPiUpt/+RtvvFFtOi8vT2az2T7t4+Oj3Nzc6+abzWbl5ubq4sWL8vT0lIuLS7X5N6N5c89f8S9AfWU2ezk6AgAAt0ytFrYfslqtMplM9mmbzSaTyfST86v+/E8/nL6RCxeKZLXabuo9fNjXfxZLoaMjAABQY05Opp8dZKrTq0Rbtmwpi8Vin7ZYLPLx8blufn5+vnx8fOTt7a3CwkJVVlZWWx4AAKAhqdPC1rVrV2VmZur06dOqrKzU5s2bFRISIj8/P7m7u+vAgQOSpI0bNyokJESurq7q0aOHtmzZIknasGGDQkJC6jIyAACAw9XpIVF3d3e9+eabevnll1VaWqp+/fopLCxMkrRgwQLNmjVLRUVFCggI0OjRoyVJ8fHxmjZtmt555x21atVKCxcurMvIAAAADmey2Ww3d4JXPfNLz2GLnvpeLSVCbUuYH8M5bACAesVQ57ABAADg5lHYAAAADI7CBgAAYHAUNgAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADI7CBgAAYHAUNgAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADI7CBgAAYHAUNgAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobAACAwVHYAAAADI7CBgAAYHAUNgAAAINzSGHbuHGjhgwZoiFDhujPf/6zJCk9PV1RUVEKDQ3VzJkzVVFRIUk6e/asYmJiFBYWpvHjx6u4uNgRkQEAABymzgvbtWvX9MYbb2jNmjXauHGj9u/fr127dmnKlCmKi4tTSkqKbDabEhMTJUmvvfaaoqOjlZycrMDAQC1btqyuIwMAADhUnRe2yspKWa1WXbt2TRUVFaqoqJCLi4tKSkoUFBQkSYqKilJycrLKy8u1b98+hYaGVpsPAADQkLjU9Qo9PT01ceJEhYeHq1GjRurZs6dcXV1lNpvty5jNZuXm5urixYvy9PSUi4tLtfk3o3lzz1uaH/WD2ezl6AgAANwyNSpsubm58vX1rTbv5MmT8vf3v+kVHjt2TB9++KE+//xzeXl5afLkydq5c6dMJpN9GZvNJpPJZP/zP/1w+kYuXCiS1Wq7qffwYV//WSyFjo4AAECNOTmZfnaQ6WcPiV66dEmXLl3SCy+8oMuXL9un8/Pz9dJLL/2iQDt27FCfPn3UvHlzubm5KSoqSmlpabJYLPZl8vPz5ePjI29vbxUWFqqyslKSZLFY5OPj84vWCwAAUF/9bGH74x//qN69e+vEiRPq1auXevfurd69e+vRRx9VQEDAL1ph586dtWvXLl29elU2m02pqal66KGH5O7urgMHDkj6/irSkJAQubq6qkePHtqyZYskacOGDQoJCflF6wUAAKivfvaQ6KpVqyRJ06dP17x5827JCh9++GF98803ioqKkqurq+6//36NHTtWgwYN0qxZs1RUVKSAgACNHj1akhQfH69p06bpnXfeUatWrbRw4cJbkgMAAKC+MNlsthqd4HXmzBldvnxZ/7n4Lx1lq0u/9By26Knv1VIi1LaE+TGcwwYAqFdudA5bjS46+Mtf/qJVq1apefPm9nkmk0mfffbZr08IAACAn1WjwrZhwwZt3br1uitFAQAAUPtqdOPcVq1aUdYAAAAcpEYjbH369NH8+fM1YMAAeXh42OfXh3PYAAAA6rsaFbakpCRJqvZYKM5hAwAAqBs1Kmypqam1nQMAAAA/oUaFbfXq1T86/5lnnrmlYQAAAHC9GhW2EydO2H8uKyvTvn371KdPn1oLBQAAgH+rUWH74VMOcnNzNXPmzFoJBAAAgOpqdFuPH/L19dWZM2dudRYAAAD8iJs+h81ms+nIkSPVnnoAAACA2nPT57BJ399Id+rUqbUSCAAAANXd1DlsZ86cUUVFhdq2bVuroQAAAPBvNSpsp0+f1u9//3vl5eXJarWqWbNmWr58udq3b1/b+QAAABq8Gl10MHv2bD3//PPat2+fDhw4oPHjx+u1116r7WwAAABQDQvbhQsXNGzYMPv08OHDdfHixVoLBQAAgH+rUWGrrKzUpUuX7NMFBQW1FggAAADV1egctqeeekr/9V//pfDwcJlMJm3ZskVPP/10bWcDAACAajjC1q9fP0lSeXm5Tp06pdzcXA0aNKhWgwEAAOB7NRphmzZtmmJiYjR69GiVlpZq7dq1mjFjhlauXFnb+QAAABq8Go2wXbx4UaNHj5Ykubu7a8yYMbJYLLUaDAAAAN+r8UUHubm59un8/HzZbLZaCwUAAIB/q9Eh0TFjxuiJJ57QI488IpPJpF27dvFoKgAAgDpSo8L25JNPKjAwUHv27JGzs7Oee+45dezYsbazAQAAQDUsbJLUuXNnde7cuTazAAAA4EfU6Bw2AAAAOA6FDQAAwOAobAAAAAbnkMKWmpqqqKgohYeH6/XXX5ck7dq1S5GRkRo8eLAWLVpkXzY9PV1RUVEKDQ3VzJkzVVFR4YjIAAAADlPnhS07O1vx8fFatmyZNm3apG+++Ubbt2/XjBkztGzZMm3ZskVHjhzR9u3bJUlTpkxRXFycUlJSZLPZlJiYWNeRAQAAHKrOC9u//vUvRUREqGXLlnJ1ddWiRYvUqFEjtW3bVm3atJGLi4siIyOVnJysM2fOqKSkREFBQZKkqKgoJScn13VkAAAAh6rxbT1uldOnT8vV1VUvvviizp07p0cffVQdOnSQ2Wy2L+Pj46Pc3Fzl5eVVm282m6s9caEmmjf3vGXZUX+YzV6OjgAAwC1T54WtsrJS+/fv15o1a9S4cWONHz9eHh4eMplM9mVsNptMJpOsVuuPzr8ZFy4UyWq9ucdo8WFf/1kshY6OAABAjTk5mX52kKnOC1uLFi3Up08feXt7S5IGDhyo5ORkOTs725exWCzy8fFRy5Ytqz1kPj8/Xz4+PnUdGQAAwKHq/By2xx57TDt27NCVK1dUWVmpL7/8UmFhYcrMzNTp06dVWVmpzZs3KyQkRH5+fnJ3d9eBAwckSRs3blRISEhdRwYAAHCoOh9h69q1q55//nlFR0ervLxcwcHBGjVqlO699169/PLLKi0tVb9+/RQWFiZJWrBggWbNmqWioiIFBARo9OjRdR0ZAADAoUw2m+3mTvCqZ37pOWzRU9+rpUSobQnzYziHDQBQr9zoHDaedAAAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4Bxa2P785z9r2rRpkqT09HRFRUUpNDRUM2fOVEVFhSTp7NmziomJUVhYmMaPH6/i4mJHRgYAAKhzDitsu3fv1kcffWSfnjJliuLi4pSSkiKbzabExERJ0muvvabo6GglJycrMDBQy5Ytc1RkAAAAh3BIYbt06ZIWLVqkF198UZJ05swZlZSUKCgoSJIUFRWl5ORklZeXa9++fQoNDa02HwAAoCFxSGGLi4tTbGysmjZtKknKy8uT2Wy2v242m5Wbm6uLFy/K09NTLi4u1eYDAAA0JC51vcL3339frVq1Up8+fZSUlCRJslqtMplM9mVsNptMJpP9z//0w+kbad7c89eHRr1jNnvV2bqsFeVycnGts/Xh1uG/HYD6os4L25YtW2SxWPT444/r8uXLunr1qkwmkywWi32Z/Px8+fj4yNvbW4WFhaqsrJSzs7MsFot8fHxuan0XLhTJarXd1Hvq8sMetcNiKayzdZnNXjow//k6Wx9unQen/q1OtxUA+ClOTqafHWSq80Oiq1ev1ubNm7Vx40b94Q9/UP/+/TVv3jy5u7vrwIEDkqSNGzcqJCRErq6u6tGjh7Zs2SJJ2rBhg0JCQuo6MgAAgEMZ5j5sCxYs0Lx58xQWFqarV69q9OjRkqT4+HglJiYqIiJC+/fv16RJkxycFAAAoG7V+SHR/xQVFaWoqChJUufOnfXBBx9ct4yfn5/WrFlT19EAAAAMwzAjbAAAAPhxFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABkdhAwAAMDgKGwAAgMFR2AAAAAyOwgYAAGBwFDYAAACDo7ABAAAYHIUNAADA4ChsAAAABueQwvb2229ryJAhGjJkiObPny9J2rVrlyIjIzV48GAtWrTIvmx6erqioqIUGhqqmTNnqqKiwhGRAQAAHKbOC9uuXbu0Y8cOffTRR9qwYYOOHj2qzZs3a8aMGVq2bJm2bNmiI0eOaPv27ZKkKVOmKC4uTikpKbLZbEpMTKzryAAAAA7lUtcrNJvNmjZtmtzc3CRJ7du3V1ZWltq2bas2bdpIkiIjI5WcnCx/f3+VlJQoKChIkhQVFaW//OUvio6OruvYAPCrNb3DXe7//74P9U9pWZmuXC51dAw0UHVe2Dp06GD/OSsrS5988omeeuopmc1m+3wfHx/l5uYqLy+v2nyz2azc3NybWl/z5p6/PjTqHbPZy9ERUE/U9bYyZvXEOl0fbp13n1kis5nCDceo88JWJSMjQ+PGjdPUqVPl7OysrKws+2s2m00mk0lWq1Umk+m6+TfjwoUiWa22m3oPH/b1n8VSWGfrYnup39hWcDPqcntBw+LkZPrZQSaHXHRw4MABjRkzRn/84x81bNgwtWzZUhaLxf66xWKRj4/PdfPz8/Pl4+PjiMgAAAAOU+eF7dy5c5owYYIWLFigIUOGSJK6du2qzMxMnT59WpWVldq8ebNCQkLk5+cnd3d3HThwQJK0ceNGhYSE1HVkAAAAh6rzQ6KrVq1SaWmp3nzzTfu8kSNH6s0339TLL7+s0tJS9evXT2FhYZKkBQsWaNasWSoqKlJAQIBGjx5d15EBAAAcqs4L26xZszRr1qwffW3Tpk3XzevcubM++OCD2o4FAABgWDzpAAAAwOAobAAAAAZHYQMAADA4ChsAAIDBUdgAAAAMjsIGAABgcBQ2AAAAg6OwAQAAGByFDQAAwOAobAAAAAZHYQMAADA4ChsAAIDBUdgAAAAMjsIGAABgcBQ2AAAAg6OwAQAAGByFDQAAwOAobAAAAAZHYQMAADA4ChsAAIDBUdgAAAAMjsIGAABgcBQ2AAAAg6OwAQAAGByFDQAAwOAobAAAAAZHYQMAADA4ChsAAIDB1YvC9s9//lMREREaPHiw3nvvPUfHAQAAqFMujg5wI7m5uVq0aJGSkpLk5uamkSNHqlevXvL393d0NAAAgDph+MK2a9cu9e7dW3feeackKTQ0VMnJyXrppZdq9H4nJ9MvWm+LZk1+0ftgDL/0v/sv5da0eZ2uD7dOXW8rLTy963R9uLXqcntp6ukqV3f3Olsfbp3y0lJdKSq/qffcaNsy2Ww2268JVduWL1+uq1evKjY2VpL0/vvv69ChQ5ozZ46DkwEAANQNw5/DZrVaZTL9u3XabLZq0wAAALc7wxe2li1bymKx2KctFot8fHwcmAgAAKBuGb6w9e3bV7t371ZBQYGuXbumrVu3KiQkxNGxAAAA6ozhLzrw9fVVbGysRo8erfLycj355JN64IEHHB0LAACgzhj+ogMAAICGzvCHRAEAABo6ChsAAIDBUdgAAAAMjsIGAABgcBQ2AAAAg6OwNVBWq1VcIAzgVrJarexbgFpCYWtgysrKJElOTk72R3yxkwVwKzg5OV23b2G/gp/D9lFzzq+++uqrjg6BurNq1SpNnDhRZ8+elSS1aNFC7u7uMplMPKMVP+rKlSsqLS2VyWSSs7Ozo+PAoP72t7/p+eefV3Fxse644w6ZzWb2K7ghk8mknJwcHT16VGfPnlV5eblcXV3l5ubm6GiGw41zG5hLly7pxIkTWrlypb755hu5u7urefPm6tevn3r37q0ePXrIZrOxk4UkKSEhQYmJibp27ZrWrl2rI0eOqG/fvnJxMfxDUlCHbDabSktLtWPHDi1ZskQZGRny8PBQly5dFBYWpv79+6tNmzbsW3CdvLw8jR07Vu7u7mrTpo28vLzUsmVLtWzZUkOHDuVL4n/gkGgDc+edd+qhhx6Sp6en/t//+3/6v//7P02YMEE7d+7U888/r2+//ZYdagNX9R3u0KFD+vTTT7V06VI1btxYHh4eevXVV7Vv3z4HJ4TRmEwmeXh4aODAgerZs6fefvttffTRR4qKilJCQoIGDRqkQ4cOsW+BndVqlSTt3r1b3bp10/r16zVmzBgFBAQoLy9PJ06coKz9AF+TG5Cqb7d79uxRTk6OwsLCVFlZqdatW+uOO+5QSkqK7r33XkfHhINVbSd79+7Vww8/rJMnT6pDhw5q3LixXnnlFSUmJqpPnz6MlsCualtIT0/X3r17FYYC5EgAABXlSURBVBcXJ0m655571KdPH61YsUKBgYEOTgkjyszMVPPmzSVJgYGB9u2ktLTUkbEMiRG2BqTqw9XX11etW7fWl19+af8Gk5GRYT+vDQ2bk9P3u4V27drJZDJp/fr1GjFihKTvvw0/8MADkv79DRmo2rc0btxYHTt21K5du+yvHTx4UOfPn7dvV4D07/2Mp6en1qxZo+joaL311lv6/PPPVVBQIHd3dwcnNB7OYWugNmzYoHfeeUfFxcW666671KZNGw0ZMkT9+/d3dDQ4UGVlZbXDEAsXLtSaNWvUrl07tWvXTmVlZZo+fbpat27NCBt+1L/+9S/NmTNHTk5OCggIkIuLix577DE98cQTjo4Gg6jad+Tm5mr79u0KCAhQZmamjh49qszMTBUXF+vvf/87Jf8HKGwNUGlpqY4fPy4/Pz/l5+frwoUL6ty5s7y9vR0dDQ72xRdfKDY2VsHBwXr44YcVFhamxo0ba9++fSopKdFjjz3m6IgwsJKSEp07d07e3t46fvy4Ll68qJ49e7JvwY/6+uuv9e677+qJJ57Qo48+Kun7ixAuX76sDh06ODacAVHYGgir1SonJyft379fn3/+uT777DO1a9dOM2fO1P79+zVs2DBHR4QBlJWV6ejRozpy5Ih2796tjIwMeXl56eGHH9YDDzygvn37qlGjRoyswa5q33L8+HFt2rRJH374oQICArRw4UJ9/vnnjKzhZ3311VdasWKFiouLNXr0aPXv35+RtZ/ARQcNRFUv37hxo3r37i0PDw81bdpUVqtVmzdv1kMPPSQ/Pz8Hp4Sjubm5qVu3bvL29tYTTzyhsrIynTp1SmlpaVq8eLEkaeDAgRwOhV3VvmXDhg265557NHnyZJ0+fVpFRUVau3atevToodatWzs4JYxox44dateund58802tXbtWy5YtU3p6ul588UW5uro6Op7hUGMbiKpvLMeOHdOgQYN07NgxBQUFqW3btiorK1NGRoaDE8Iorl69qhUrVuitt95SamqqKisr9dvf/lbr1q3TgAEDJImyBruqfcs333yj4OBg7d27V0FBQfLz81OLFi24DQx+1KlTpxQXF6ehQ4fq97//vcrLy9WiRQtt3ryZsvYTGGFrIKo+YEeMGKFXX31V6enp6tq1qy5fvqz8/Hz16NHDwQnhaFWHtvbu3avTp0+rVatWys3N1e7du1VYWKjg4GD1799fd999t6OjwkCq9i3Dhg1TUlKSDh48qPnz56ugoEA5OTnq3bu3gxPCiJo1a6YXXnhBR48elYeHh+677z69/PLLjo5laJzD1gCcOnVKPj4+8vLyUmVlpZYsWaK9e/fq4sWLuuOOOxQWFqZnn33W0THhYFVXiL7yyiuKiIjQwIEDVVFRoaysLL311lu6evWqmjRpounTp6tt27aOjguDKS4u1uuvv67U1FQ1adJE9957rwIDAzVp0iRHR4NBVVZW6syZM/r222914MABNW/eXKNGjeKWHj+BEbYG4Msvv1R4eLiSk5N14cIFPfLIIxo4cKC8vb3VqFEj+00L0bBV3c7D09NTx48fV+/eveXp6Sl/f3+5u7srPj5eK1asUEZGBoUNkv49Kvvtt98qJSVFsbGxmjdvng4cOKDGjRurS5cujo4IAyoqKtKECRN033336ezZszp06JCcnZ1VUlKiiIgI+fj4ODqiIVHYGoABAwbI19dX7u7uunz5spKSkuznC7Rs2VJPPvmkPD09HR0TBhEdHa2//vWvSkhIkJeXlzIyMmSxWNS0aVOlp6dr/Pjxjo4Ig6g6f23OnDlq3769/e7069evV2hoKIUN17HZbGrSpIlGjhypiooKDR8+XM2bN9f58+fl4eFBWfsZFLYGoE2bNjp27Ji++OILxcfH69SpU8rLy1NOTo7Onz9PWUM1nTt31pgxY7R161ZdvnxZ7du31+DBg5WYmKg777xTvr6+jo4IA8nOztb58+e1evVq+7zIyEh9+OGHCgkJ4QRy2FWNyJ48eVI5OTnKy8vTnj17FBwcrIiICEfHMzwK222uoqJCLi4u2rt3r/z8/OTl5aWgoCBJ3w9LFxcXOzghjKBqR/rJJ58oNTVVHTp00MMPP6w777xTd999t5ydnWU2m7mnFq5TXFysFi1aaPv27erWrZuaNm2qdu3aKSsri7KGaqpGZGfPnq1u3bopICBAJpNJ//jHP1RaWsr9QG+Awnabc3H5/j/xyZMn9f777ysvL0+hoaHq06ePPD09GV2DpH/vSJcuXaohQ4YoJydHe/bskZOTk9zc3PT666+rffv2Dk4JI+rcubOGDx+upKQkZWVlKTMzU2fPntWTTz7p6GgwoJycHF2+fFmxsbH2eXfddZeWL1+uIUOGyM3NzYHpjI3C1gBYrVY9+eSTCg4O1q5du/TXv/5Vb7zxhho1aqR3332Xx8Y0cFU3wT1+/Lj8/f01YcIE+2snTpzQ119/zTaCnxQTE6OlS5fK3d1dx44dU7t27TRkyBAFBAQ4OhoMqKCgQN7e3vr666/VqVMnNWrUSL6+vrpw4QJl7QYobLexqg/i3bt3629/+5tWr16t0NBQWa1W5eTk6PDhw3wQw76dnDt3Tt99951Wr16tRx55RP7+/urYsaM6duzIkw1QTdUh9FOnTsnLy0ve3t4KDw9XeHi4ysrK+ODFj7JarXrggQfUr18/rV27Vv369dN3332nr776Sr/5zW8cHc/wnF999dVXHR0CtaNqp/rll1/KarWqe/fucnd3l8lk0h133KGOHTs6OiIMoKqIZWVlqaysTJmZmfr666+1Y8cO7du3T23bttUdd9zh4JQwkqpt5l//+pfeffddbd++XZWVlWrdujWnWeAnVW03DzzwgAoLC7Vnzx6ZTCaFh4dr4MCBFP0b4Ma5DcCf/vQnbdu2TW3atFGvXr0UHByszp07M7oGFRQU6KOPPtJzzz2n8+fPq0mTJrp06ZKys7OVnZ2tjIwMjR8/nnv14TpVXwizs7O1c+dOffzxxzp8+LBKSkq0cuVKPfLII46OCIOoGqG/cOGC/vd//1fp6emKiIhQ165d1aJFCzVr1szREesFClsDUVZWpgMHDig1NVX79+9Xbm6uPvnkE0ZOGri8vDwdPnxY/v7+evzxx/XII48oMDBQwcHB8vX1lYuLCztT/KRLly5p27ZtkqRevXqpVatW2rFjhzp16iSz2ezYcDCMqqeoLFmyRJmZmerWrZv27t2rU6dO6dq1a3ryySd5LFUNUNhuU1XffnNycpSWlqZTp07poYceUpcuXeTr66uioiIOXcDu/Pnz2rRpkyRp7969Onz4sLy8vPT000/rd7/7nYPTwUiq9i1HjhzR22+/LW9vb7m6uuro0aMaMGAAN1bGdapG2P70pz/p6aef1n333Wd/7dChQ5K+P0yKn8dFB7epqh6+dOlSSZLFYlFmZqZsNpvy8vIUHR3NZfeo9vzQyMhIDRo0SMXFxTp06JD69u1rP6xVtRxQtW9JSkpS9+7dNXbsWEnS119/rf/5n//R9u3b1a9fP0dGhMGYTCZZrVa5ubnpnXfe0fDhw+Xv76/WrVtT1G6Ck6MDoHZUfbgeP35ccXFx6t69uwYPHqygoCC1aNFCXbt2dXBCGIGzs7MsFotsNptGjRql1atXKy8vTykpKbp48aJatmxpXw6Q/r0tnD9/Xj179rTPDwoKUqNGjVRYWOioaDCwgoICNW3aVI0bN1ZqaqreffddLV261D6yjxtjhO02lp+fLx8fH7m6uqpRo0a66667NGzYMA0ZMkR33323o+PBIM6dOyez2axFixZp3759Wrx4sQoKCuzP9uOWHvgxI0aM0IwZM/Tcc8+pY8eO9ufOTps2zdHRYCBVo/N5eXl6/vnnVV5erhMnTshisejYsWOOjlevcFuP25iHh4dOnjypb775Rp06ddInn3wiJycnpaen67e//a2j48EgfH19VVZWJovFomeeeUaVlZVasGCBunfvrj59+tjPWQKsVqtMJpPOnDmjVq1aqW3btjp8+LB27typ999/X2PGjFGPHj0cHRMGUrX/+OMf/6iWLVsqMDBQd999t7p06aLS0lK1b9+eq9BriIsObkNV/4Ps2LFDubm5ysvL07Vr1/TRRx/J19dXo0aN0vDhwx0dEwZTtd189tlncnNzU/fu3dWkSRNG2HCdlStXas+ePZoxY4aaNWum0tJSNWvWTB4eHo6OBoPKzs7Wiy++qLFjxyojI0O7d++WzWbT6tWruVtBDTHCdhuq+nB96qmndOedd0qSSktL5eLiIl9fX0VHR6tJkyaOjAgDqtpu7r33XrVt29Z+E0vKGn7o/vvv19WrV7Vs2TIVFRXp/vvv50MX10lISFBsbKwqKirUpUsXubm5acOGDWrevLkmTZqkUaNG2T+jcGOMsN2msrOztWLFCs2ZM0dXr17VuXPnlJOTo6ysLD399NOOjgfgNpCdna2PP/5YJSUleu655+Tl5eXoSDCQgoICffjhh9q+fbsOHjyo8vJyNWrUSPPmzdPDDz8sT09PrkC/CRS220zVYa1jx45p1apVeuihh/T444/zyA8Av0rVvmX//v3KyclRcXGxTpw4ocLCQn355Zdq37691q1b5+iYMLBz584pJSVF//znP3X06FGtXr1affr0cXSseoPCdpup2qlOnz5d58+fV2Zmpjw9PeXv76+AgACNGDGCIWgAv9gHH3ygTz/9VN27d1ezZs106dIlde7cWf7+/mrVqpWj48Egqs59vXz5svbu3avMzEy1bt1a999/v9q0aVNtGdQMt/W4zTg5Oam0tFRZWVlau3atJCk9PV1ffvmltm7dqoiICAobgJtSWlqq2NhYLVu2TK6urpo9e7Z8fHwcHQsGZrVa5ezsrM2bNysxMVFBQUHKy8vTrl27ZLVa1b17d27efpMobLeRqm8rGRkZKikpUWpqqvr166cuXbqoS5cu9juSA8DNyM3NVUBAgPbu3au///3v9uLWqVMn9e3bV/369VOLFi0cHRMGUjVydvLkSc2aNUs9e/ZUVlaWcnJydOzYMfn5+Tk4Yf3DIdHb0KFDh/S3v/1NmZmZat68ufz8/NShQweFh4fL19fX0fEA1DOffPKJNm3apLvuukvNmjWTr6+vSkpKdPr0ae3bt08dO3bUW2+95eiYMKAXXnhBAwYM0MiRI6vN53DozaOw3YasVqsqKip08eJFnTx5UidOnFBaWprGjBmj3r17OzoegHrq97//vQoKCmQ2m3X33XcrLy9P99xzj8LDw3XPPfc4Oh4MJj8/XzNnztTevXvl4+Oj+++/3/6MYrPZ7Oh49Q6FrQGwWq26evWqGjduzB3rAfwiFRUVGj58uDZu3Cjp+yv+/vnPf+rjjz/WqlWrOCQKu6qL37Zv367Dhw+rbdu2unz5sk6fPq20tDR16tSJEdlfgHPYGgAnJyd5eno6OgaAeuzkyZNq3LixsrOz1bJlS7Vq1UovvPCCUlNTKWuopmpgoOoCt3379kmSioqKNHToUA0aNMhh2eozRtgAADdUUVGhFStWKCMjQwMHDpTFYtHRo0fVqFEjzZ4929HxYHDZ2dnavHmzdu3apSVLlsjb29vRkeodChsAoEZKSkr02Wefaffu3XJ3d9e9996rgQMHcjET7KouJkhPT9fWrVv16KOPKiAgQC4u3x/Qe+qpp/SPf/zDwSnrJwobAOCm2Gw2VVRUyNXV1dFRYFD79+/X2rVrdeXKFVVWVsrT01NlZWXy9vbW3LlzHR2vXqKwAQCAW8pms6msrEwFBQX69ttvdfToUTk5OSk0NNT+pAPcHAobAACAwXGPBwAAAIOjsAEAABgchQ0AAMDgKGwAAAAGR2EDAAAwOAobgAZnyZIl2rBhgyTp7bff1qeffnrD93Tq1EkFBQW/aH3btm3TkiVLbtlyABoeniUKoMGZOHGi/ee0tDT5+/vX6voOHz6sy5cv37LlADQ8FDYAhpeWlqaFCxeqVatWyszMVKNGjTR27FitWbNGmZmZGjx4sKZNm6a5c+fq4MGDKi4uls1m0+uvv64HH3xQ06ZN06VLl5Sdna1HH31UFy5cUIcOHeTh4aEjR45o/vz5cnZ2lr+/v2bPnq3i4mJZLBZ17txZixcvlru7e41ybt26Ve+8845MJpOcnZ01depUubm5ad26daqsrJSXl5fGjRunV199VadPn9alS5fUpEkTLViwQIWFhdWWa9u2rVJSUrR8+XJJUlJSkn16//79evPNN2W1WiVJ48aNU2hoaK39/gE4HodEAdQLhw8f1tixY7Vx40Z5enpqxYoVWr58uZKSkpSQkKCvvvpKeXl5Wr9+vbZs2aJhw4Zp5cqV9veXlJTo448/1pQpU+zzYmJiFBgYqKlTp2rQoEFKTEzUE088ocTERG3dulU5OTnatm1bjTPOnz9f8fHxSkpK0sSJE5WWlqauXbtq5MiRioiIUGxsrL744gs1bdpU69evV0pKigIDA/Xee+9dt9zPWbp0qZ555hklJSVp7ty52rNnz03/PgHUL4ywAagXWrdurfvuu0+SdPfdd8vLy0tubm7y9vZWkyZN5OXlpUmTJmndunXKzs5WWlqamjRpYn//gw8+eMN1TJkyRTt37tTKlSuVlZWlvLw8Xb16tcYZhwwZopdeekn9+vVTcHCwXnjhheuWCQsLU5s2bbRmzRqdPn1ae/fuVbdu3Wq8DkkKDw/X7NmzlZqaqr59++qVV165qfcDqH8YYQNQL7i5uVWbdnGp/n1z9+7dGjdunCRpwIABGjVqVLXXGzdufMN1vPLKK0pMTJSfn5/GjBmjgIAA3czT+2JjY5WQkKDAwEAlJSUpJibmumUSEhI0c+ZMeXh4KDIyUkOHDv3RdZhMpmrzy8vL7T+PHDlSmzZtUnBwsHbs2KHf/OY3Ki0trXFOAPUPhQ3AbeHzzz/XY489pujoaAUGBurTTz9VZWXlDd/n7OysiooKSdKOHTs0YcIERURESJIOHjxYo79DkioqKtS/f39du3ZNo0aNUnx8vI4fP66ysrLr1jFs2DCNGDFC99xzj1JTU+3r+M/lvL29lZGRodLSUpWXlyslJcW+rpEjRyo9PV1RUVGaM2eOrly5IovFUvNfFoB6h0OiAG4LM2bM0NSpUxUZGamKigoFBwdr69at9hPzf0r//v21cOFClZeXKzY2VhMmTFDjxo3l6empnj176rvvvqvR+l1cXDRjxgxNnjxZLi4uMplMmjt3rtzc3NS7d29NnjxZc+bM0bPPPqu4uDh98MEHkqSgoCCdOHFCkqotN336dPXs2VPh4eEym83q1auXjh8/LkmaPHmy5s6dq8WLF8tkMumll15S69atf8VvD4DRmWw3M94PAACAOscIGwDU0J49ezRv3rwffa1Xr16aMWNGHScC0FAwwgYAAGBwXHQAAABgcBQ2AAAAg6OwAQAAGByFDQAAwOD+P1atvRHJXdSjAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["plt.figure(figsize = (10,5)) # Setting figure parameters\n","sns.set(style=\"darkgrid\")\n","sns.countplot(x='marital_status', data=data).set_title('marital_status') # Plot\n","plt.xticks(rotation = 75) # Setting labels\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"DxyQRfFi_p1m"},"source":["__Insight: The bar chart shows married candidates have highest frequency__"]},{"cell_type":"markdown","metadata":{"id":"PYTnpyoJ_p1n"},"source":["#### Martial Status - Metric approach "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"U4_ohBU7_p1n","outputId":"dd5d9607-2949-4f4c-8fec-c0cd121c80fa"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.6948474237118559\n"]}],"source":["martial_status_perc = len(data[data['marital_status'] == \"married\"])/len(data['marital_status'])\n","print(martial_status_perc)\n"]},{"cell_type":"markdown","metadata":{"id":"WMHgb2zZ_p1n"},"source":["__Insight: Married candidates have 69% of the total__"]},{"cell_type":"markdown","metadata":{"id":"LTHVjA3b_p1o"},"source":["#### Age Distribution - Visual approach "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GjhNs4ha_p1o","outputId":"3bb95ff0-0c68-4513-ab43-5b6fb81bd59a"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAegAAAEfCAYAAACKx1WtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de1RU9f7/8dfIIEpohs1ox2N2UlPzbirSKugmkkC5WHbCOtrlmFpeilr4TSQNu4gdyi7Iym5276R4jRBbWuoxywun8lhU5hEz9eCIV0CGy8zvj5bzC0FBGZyPw/OxFiv2nn15fz6fti/2npm9LW632y0AAGCUZr4uAAAA1ERAAwBgIAIaAAADEdAAABiIgAYAwEAENHCe8cUJAPVBQAOnGD16tMaPH1/ra5s2bVK3bt30n//8R5L0yiuvqH///vXe9urVqzVz5kyv1Hkhmj17tgYOHKgBAwYoLy/vjMu+/fbb6tatm1JTU89TdYBZCGigAe644w6988479V7+nXfeUWFhYSNWZK6ffvpJb7/9tuLj4zV//nz16NHjjMsvX75cXbt2VXZ2tsrKys5TlYA5CGigAdq3b68+ffr4uowLwtGjRyVJsbGxGjRokIKDg0+77I4dO/TDDz8oOTlZpaWlys3NPV9lAsYgoIEGOPUS93fffae7775b/fv31+DBgzVlyhTt3btX0u+Xzjdv3qy1a9eqW7du+u233yRJP/74o8aOHavBgwdr8ODBSkpK0sGDB6vtZ+XKlYqNjVWfPn00cuRIrV69Wt26ddOmTZskSY8//rgeeughPfbYYxowYIASExMlSf/97381ZcoUDRkyRL169dJNN92kefPmed4HP3nJ/uuvv9Ydd9yhPn36KDY2Vlu3btXWrVs1YsQI9e3bV3fddZd27959xr44UzteeeUVjR49WtLvVx1O/n46S5culc1mU3h4uMLDw5WVlVVjGafTqaefflrh4eEaMGCApk+frhdeeEE33XRTteXeffddRUVFqVevXoqJiVFOTs4Z9w2YgoAGauF2u1VZWVnjx+VynXadEydOaNy4cWrXrp0yMzP11FNP6YcfftCjjz4qSZo5c6auvvpqDRgwQB9//LHsdrvy8/N15513qqKiQmlpaUpOTtbWrVv1t7/9TaWlpZKk9evXKzExUb1799a8efN07bXX6rHHHqux/3Xr1snpdGrevHm68847VVJSojFjxujIkSOaM2eO5s+fr7CwML388sv64osvqq2blJSkkSNHKiMjQy6XS4888oiSk5N177336tlnn9XOnTs1a9as07a9rnbccccdmjFjhqTf34c+0/vwLpdL2dnZiouLk8Vi0e23364tW7Zo165d1ZZLTk7WkiVLNGnSJD3//PP69ddftWDBgmrLZGRkaM6cORo+fLheffVVXXvttXr00Ue1cuXK0+4fMIXV1wUAJlq3bp169ux5Vuvs2LFDR44c0ejRoz1n1Zdccom+/vpruVwudenSRSEhIQoODla/fv0kSZmZmQoNDdXrr7+u5s2bS5J69eqluLg4LV68WKNHj1ZmZqYGDRqk2bNnS5Kuv/56lZSU6P3336+2/8rKSs2aNUuhoaGSpO3bt+vyyy/Xiy++6JkXHh6u1atXa8uWLdXONEePHq0777xTkrRv3z7NnDlTc+bM0YgRIzxtO3V/f1SfdnTp0kWS1LVrV8/vtdm4caMKCwt1++23S5KGDh2qiy66SFlZWUpKSpIk7dq1S9nZ2Zo9e7bi4+MlSUOGDNHNN9/s2c6xY8f02muvaezYsXrkkUckSdddd51KSkr0/PPP69Zbbz1tDYAJOIMGanHNNdcoKyurxs+ZPlF85ZVXqk2bNpowYYJmzZqldevWqV+/fpoyZYqaNav9UNuyZYtuvvlmT6hJUpcuXdStWzdt2bJFTqdT3333XbXgkaTo6Oga2woNDfUEsfR7QH744Ydq1aqVfvnlF61evVoZGRmqrKxUeXl5tXX/+D76pZde6ln/pDZt2uj48eOnbXtd7Tgby5YtU+fOnfWnP/1Jx44dU3l5uW688UYtW7ZMlZWVnv1J0i233OJZr2XLloqMjPRMf/vtt3I6nbrhhhuqXQWJiIjQnj17tGfPnrOqCzjfOIMGatGqVSv17t27xvyTl51rExISovfff1/z5s3T0qVL9cEHH6h169ZKTEzUXXfdVes6x44dU9u2bWvMb9u2rYqLi3X06FG5XK5qwXvy9drWOdWrr76qN954Q8ePH1eHDh3Uv39/Wa3WGt/Fvuiii2qs26JFi9O29WzbUV8lJSVas2aNSktLNWjQoBqvf/HFFxo6dKgOHz6swMBAtW7dutrrJ/+4kKQjR45IkhISEmrdl8PhUMeOHetdG3C+EdCAF3Xt2lUvvviiysvLlZeXp3feeUepqanq2bOn+vbtW2P5iy++WEVFRTXmHzx4UJ07d1bbtm0VGBioQ4cOVXv91OnaLFu2TC+++KJmzpyp2NhYtWrVStLvl7m9ra521NeqVatUWlqqV155RRdffHG116ZOnapFixZp6NChstvtqqio0LFjx6qF9B/75WR7582bp3bt2tXY11/+8pd61wX4Ape4AS9Zv369wsPDdejQITVv3lzh4eF64oknJP3+vq6kGpe6r7nmGq1Zs6baJeedO3fq559/1oABAxQQEKB+/frp888/r7bemjVr6qznm2++Ufv27TVq1ChPWH3//fc6dOiQ1+9mVlc76mvZsmXq2bOnoqKiFBYWVu1n+PDh2rBhg/73v/9pwIABatasWbV+KS8v17/+9S/PdN++fRUYGKiioiL17t3b87Njxw7NmzfPOw0HGhEBDXhJnz595Ha7NWnSJH3xxRfasGGDnnzySbVu3VphYWGSpNatW2vnzp3atGmTysrKNGHCBDkcDj3wwAP64osvtGLFCj3wwAPq0KGD5wNaEydO1ObNm5WSkqINGzYoIyPD84Gt0723LUm9e/fW/v37lZGRoc2bN+ujjz7S+PHjZbFYvH7jj/q0oy779+/Xli1ban1/XZJuu+02VVVVafHixerUqZPi4uL09NNP68MPP9S6dev04IMPyuFwyGKxSPr9PfnRo0crLS1Nr732mr7++mu9/fbbSk1NVXBwsEJCQrzWfqAxENCAl7Rp00ZvvPGGgoKCNHXqVE2aNElOp1MLFizwvId87733qry8XGPHjtUPP/ygXr166Z133lFlZaUefvhhPfPMMxo4cKA++ugjT4CEh4frueee05YtWzRhwgStX7/e8zWrM93sIz4+XmPHjtU///lPjRs3Tu+//77+/ve/a+TIkfr222+92vb6tKMuK1askMvlOm1A9+jRQ126dNHixYvldrv15JNPavjw4XrxxReVmJioDh06KDo6ulqfJCUl6aGHHtKiRYs0duxYvfvuu7rnnnuUlpbmlXYDjcni5s79gNFWr16tyy+/XFdddZVn3scff6wnn3xSmzZtqvFBqabg0KFD+vLLL3XjjTdW+wMgISFBl156qTIyMnxYHeAdfEgMMNzJy+WPPfaYLrvsMu3cuVNz587Vbbfd1iTDWfr9E+apqanKzc1VQkKCrFarVq5cqW+//bbGzUqACxVn0IDhTt5YY82aNSoqKpLdbldcXJwmTpxY7XvHTc22bds0d+5cbd++XRUVFerWrZsefPBB3XDDDb4uDfAKAhoAAAPxITEAAAxEQAMAYCACGgAAAxn3Ke7Dh0vkcnnnbfG2bUNUVFT/+wDD+xgD32MMfIv+9z2Tx6BZM4suuaTmvfAlAwPa5XJ7LaBPbg++xRj4HmPgW/S/712IY8AlbgAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwkHHfg/am46XlKnFW+rqMC15QoFVW/pQDgPPKrwP6RFmltuQX+rqMC96gHu1kDfLr/1UAwDicFwEAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMBABDQCAgQhoAAAMREADAGAgAhoAAAMR0AAAGIiABgDAQPUO6Dlz5ujxxx+XJOXn5ys+Pl7Dhg3T9OnTVVn5+xOj9u3bp7vvvlvR0dF68MEHVVJS0jhVAwDg5+oV0F999ZWWLl3qmU5KStKMGTO0atUqud1uLVy4UJKUmpqqu+66S7m5uerVq5cyMzMbp2oAAPxcnQF95MgRzZ07VxMmTJAk7d27V2VlZerXr58kKT4+Xrm5uaqoqNCWLVs0bNiwavMBAMDZqzOgZ8yYocTERLVu3VqSdODAAdlsNs/rNptNhYWFOnz4sEJCQmS1WqvNBwAAZ896phcXLVqkyy67TOHh4VqyZIkkyeVyyWKxeJZxu92yWCye//7RqdP10bZtyFmvczoHDpWqVUgLr22vqQoODpItNPic17fZWnmxGpwLfxiD46XlOlFW6esyztqBQ6VSQICvy5AkNWsmuVy+ruL88+YYtGxhVavg5l7ZVl3OGNA5OTlyOBy6/fbbdfToUZWWlspiscjhcHiWOXjwoOx2u0JDQ3X8+HFVVVUpICBADodDdrv9rAsqKiqWy+U++5bUJiBAx4vLvLOtJqy01ClHVdU5rWuztZLDcdzLFV14Kl2Ss8I34RIcHKTSUqdP9u1NLreU9+OFd1WuVUgLY/4d6nuVTd/97Kh7QT/jzTEY1KOdykq8dzw1a2Y57YnpGQN6wYIFnt+XLFmizZs3a/bs2YqNjVVeXp6uueYaLV++XBEREQoMDNTAgQOVk5OjuLg4LVu2TBEREV5rBHAhc1ZUaku+b8LFpIBoiL5X2epeCPAj5/Q96PT0dM2ePVvR0dEqLS3VmDFjJEkzZ87UwoULNXz4cG3dulWPPPKIV4sFAKCpOOMZ9B/Fx8crPj5ektS9e3dlZWXVWKZDhw567733vFcdAABNFHcSAwDAQAQ0AAAGIqABADAQAQ0AgIEIaAAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwUL3vxY2my9LMohLnuT0q0X2oVKXnuK4/8dYTVAE0HQQ06uSsqDrnZ8j6y6MOG4pHJQI4W1ziBgDAQAQ0AAAGIqABADAQAQ0AgIEIaAAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMBABDQCAgQhoAAAMREADAGAgAhoAAAMR0AAAGIiABgDAQAQ0AAAGqldAv/TSSxo+fLhiYmK0YMECSdLGjRsVFxenqKgozZ0717Nsfn6+4uPjNWzYME2fPl2VlZWNUzkAAH6szoDevHmzvv76a61YsUKLFy/We++9px9//FHJycnKzMxUTk6Otm/frnXr1kmSkpKSNGPGDK1atUput1sLFy5s9EYAAOBv6gzowYMH691335XValVRUZGqqqp07NgxderUSR07dpTValVcXJxyc3O1d+9elZWVqV+/fpKk+Ph45ebmNnojAADwN9b6LBQYGKiXX35Zb731lqKjo3XgwAHZbDbP63a7XYWFhTXm22w2FRYWnlVBbduGnNXyZ3LgUKlahbTw2vaaqsBAa4P6kTFoeB82lD+Mga/7sCFMqftC7sOG8la7g4ODZAsN9sq26lKvgJakKVOm6IEHHtCECRNUUFAgi8Xiec3tdstiscjlctU6/2wUFRXL5XKf1TqnFRCg48Vl3tlWE1ZRUXnO/dgqpAVjoIb1YUP5yxj4sg8bwqT+v1D7sKG8OQalpU45qqq8si1JatbMctoT0zovce/cuVP5+fmSpJYtWyoqKkqbNm2Sw+HwLONwOGS329W+fftq8w8ePCi73d7Q+gEAaHLqDOjffvtNKSkpKi8vV3l5udasWaOEhATt2rVLu3fvVlVVlbKzsxUREaEOHTooKChIeXl5kqTly5crIiKi0RsBAIC/qfMSd2RkpLZt26YRI0YoICBAUVFRiomJUWhoqCZPniyn06nIyEhFR0dLktLT05WSkqLi4mL17NlTY8aMafRGAADgb+r1HvTkyZM1efLkavPCw8O1YsWKGst2795dWVlZ3qkOAIAmijuJAQBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMBABDQCAgQhoAAAMREADAGAgAhoAAAMR0AAAGIiABgDAQAQ0AAAGIqABADAQAQ0AgIEIaAAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMFC9AjojI0MxMTGKiYnRc889J0nauHGj4uLiFBUVpblz53qWzc/PV3x8vIYNG6bp06ersrKycSoHAMCP1RnQGzdu1IYNG7R06VItW7ZM33//vbKzs5WcnKzMzEzl5ORo+/btWrdunSQpKSlJM2bM0KpVq+R2u7Vw4cJGbwQAAP6mzoC22Wx6/PHH1bx5cwUGBqpz584qKChQp06d1LFjR1mtVsXFxSk3N1d79+5VWVmZ+vXrJ0mKj49Xbm5uozcCAAB/U2dAd+3a1RO4BQUFWrlypSwWi2w2m2cZu92uwsJCHThwoNp8m82mwsLCRigbAAD/Zq3vgjt27ND48eM1depUBQQEqKCgwPOa2+2WxWKRy+WSxWKpMf9stG0bclbLn8mBQ6VqFdLCa9trqgIDrQ3qR8ag4X3YUP4wBr7uw4Ywpe4LuQ8bylvtDg4Oki002Cvbqku9AjovL09TpkxRcnKyYmJitHnzZjkcDs/rDodDdrtd7du3rzb/4MGDstvtZ1VQUVGxXC73Wa1zWgEBOl5c5p1tNWEVFZXn3I+tQlowBmpYHzaUv4yBL/uwIUzq/wu1DxvKm2NQWuqUo6rKK9uSpGbNLKc9Ma3zEvf+/fs1ceJEpaenKyYmRpLUt29f7dq1S7t371ZVVZWys7MVERGhDh06KCgoSHl5eZKk5cuXKyIiwmsNAQCgqajzDPrNN9+U0+lUWlqaZ15CQoLS0tI0efJkOZ1ORUZGKjo6WpKUnp6ulJQUFRcXq2fPnhozZkzjVQ8AgJ+qM6BTUlKUkpJS62srVqyoMa979+7KyspqeGUAADRh3EkMAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMBABDQCAgQhoAAAMREADAGAgAhoAAAMR0AAAGIiABgDAQAQ0AAAGIqABADAQAQ0AgIEIaAAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMBABDQCAgeod0MXFxYqNjdVvv/0mSdq4caPi4uIUFRWluXPnepbLz89XfHy8hg0bpunTp6uystL7VQMA4OfqFdDfffedRo0apYKCAklSWVmZkpOTlZmZqZycHG3fvl3r1q2TJCUlJWnGjBlatWqV3G63Fi5c2GjFAwDgr+oV0AsXLtTMmTNlt9slSdu2bVOnTp3UsWNHWa1WxcXFKTc3V3v37lVZWZn69esnSYqPj1dubm7jVQ8AgJ+y1mehZ555ptr0gQMHZLPZPNN2u12FhYU15ttsNhUWFnqpVAAAmo56BfSpXC6XLBaLZ9rtdstisZx2/tlo2zbkXEqq1YFDpWoV0sJr22uqAgOtDepHxqDhfdhQ/jAGvu7DhjCl7gu5DxvKW+0ODg6SLTTYK9uqyzkFdPv27eVwODzTDodDdru9xvyDBw96LovXV1FRsVwu97mUVVNAgI4Xl3lnW01YRUXlOfdjq5AWjIEa1ocN5S9j4Ms+bAiT+v9C7cOG8uYYlJY65aiq8sq2JKlZM8tpT0zP6WtWffv21a5du7R7925VVVUpOztbERER6tChg4KCgpSXlydJWr58uSIiIs69cgAAmqhzOoMOCgpSWlqaJk+eLKfTqcjISEVHR0uS0tPTlZKSouLiYvXs2VNjxozxasEAADQFZxXQn3/+uef38PBwrVixosYy3bt3V1ZWVsMrAwCgCeNOYgAAGIiABgDAQAQ0AAAGIqABADAQAQ0AgIEIaAAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYCACGgAAAxHQAAAYiIAGAMBABDQAAAYioAEAMBABDQCAgQhoAAAMREADAGAgAhoAAAMR0AAAGIiABgDAQAQ0AAAGIqABADAQAQ0AgIEIaAAADERAAwBgIAIaAAADEdAAABiIgAYAwEAENAAABiKgAQAwEAENAICBCGgAAAxEQAMAYKBGCehPPvlEw4cPV1RUlD744IPG2AUAAH7N6u0NFhYWau7cuVqyZImaN2+uhIQEhYWFqUuXLt7eFQAAfsvrAb1x40YNGTJEbdq0kSQNGzZMubm5mjRpUr3Wb9bM4rVa3M0sCm4R6LXtNVXWgGbn3I8tg6yqqmQMGtKHDeUvY+DLPmwIk/r/Qu3DhvLmGFgDmnk1p860La8H9IEDB2Sz2TzTdrtd27Ztq/f6l1xykVfribm+s1e311Rd+edLfF3CBY8+bDj6sOHowwuH19+Ddrlcslj+/18Ebre72jQAAKib1wO6ffv2cjgcnmmHwyG73e7t3QAA4Ne8HtDXXnutvvrqKx06dEgnTpzQZ599poiICG/vBgAAv+b196DbtWunxMREjRkzRhUVFRo5cqT69Onj7d0AAODXLG632+3rIgAAQHXcSQwAAAMR0AAAGIiABgDAQAQ0AAAG8vqnuH0pIyNDK1eulCRFRkZq6tSpmjZtmvLy8tSyZUtJ0qRJkzR06FBflum3XnrpJa1atUoWi0UjR47Ufffdp40bN2r27NlyOp269dZblZiY6Osy/VptY8AxcP7NmTNHhw8fVlpamvLz8zV9+nSVlJRo4MCBSk1NldXqV//0GumPY5CRkaHFixerdevWkqS//vWvuvvuu31cYT24/cSXX37pvvPOO91Op9NdXl7uHjNmjPuzzz5zx8bGugsLC31dnt/btGmTOyEhwV1RUeE+ceKE+8Ybb3Tn5+e7IyMj3b/++qu7oqLCff/997vXrl3r61L9Vm1jsHPnTo6B82zjxo3usLAw9//93/+53W63OyYmxv3NN9+43W63e9q0ae4PPvjAl+U1CaeOwfjx493//ve/fVzV2fObS9w2m02PP/64mjdvrsDAQHXu3Fn79u3Tvn37lJycrLi4OL388styuVy+LtUvDR48WO+++66sVquKiopUVVWlY8eOqVOnTurYsaOsVqvi4uKUm5vr61L9Vm1j0KJFC46B8+jIkSOaO3euJkyYIEnau3evysrK1K9fP0lSfHw8x0AjO3UMJGn79u2aP3++4uLiNGvWLDmdTh9WWH9+E9Bdu3b1HAQFBQVauXKlrr/+eg0ZMkTPPvusFi5cqK1btyorK8vHlfqvwMBAvfzyy4qJiVF4eHitD04pLCz0YYX+79QxqKys5Bg4j2bMmKHExETPpdRTjwGbzcYx0MhOHYOSkhL16NFDSUlJWrp0qY4dO6bMzEwfV1k/fhPQJ+3YsUP333+/pk6dqiuvvFLz5s2T3W5Xy5YtNXr0aK1bt87XJfq1KVOm6KuvvtL+/ftVUFDAg1N84I9j8NVXX3EMnCeLFi3SZZddpvDwcM88Hh50ftU2BhdddJFef/11de7cWVarVffff/8Fcwz41ScV8vLyNGXKFCUnJysmJkY//fSTCgoKNGzYMEm/Hxx8OKNx7Ny5U+Xl5erRo4datmypqKgo5ebmKiAgwLMMD05pXLWNQU5Ojtq0acMxcB7k5OTI4XDo9ttv19GjR1VaWiqLxVLt4UEHDx7kGGhEtY3BtGnTdM0112jkyJGSLqxjwG/OoPfv36+JEycqPT1dMTExkn4fiGeffVZHjx5VRUWFPv74Yz692kh+++03paSkqLy8XOXl5VqzZo0SEhK0a9cu7d69W1VVVcrOzubBKY2otjEYNGgQx8B5smDBAmVnZ2v58uWaMmWKbrrpJs2ePVtBQUHKy8uTJC1fvpxjoBHVNgZJSUn6xz/+oT179sjtduuDDz64YI6BC+PPiHp488035XQ6lZaW5pmXkJCgcePGadSoUaqsrFRUVJRiY2N9WKX/ioyM1LZt2zRixAgFBAQoKipKMTExCg0N1eTJk+V0OhUZGano6Ghfl+q3ahuDSZMm6ZJLLuEY8KH09HSlpKSouLhYPXv21JgxY3xdUpMSGhqqWbNm6cEHH1RFRYUGDBig++67z9dl1QsPywAAwEB+c4kbAAB/QkADAGAgAhoAAAMR0AAAGIiABgDAQAQ00ARkZ2erW7dueuutt3xdCoB6IqCBJiA7O1udOnXS0qVLfV0KgHoioAE/d/ToUW3YsEGTJk3Szz//rB9++MHXJQGoBwIa8HOrVq1S8+bNNXz4cF1xxRVasmSJ5zWXy6X09HSFhYUpLCxMmZmZGjp0qDZt2iRJKi8v1zPPPKMhQ4YoLCxMDz/8sA4ePOirpgBNCgEN+LlPPvlEERERslqtuvnmm5Wdna2KigpJ0vz587Vs2TKlp6drwYIFWrt2rfbs2eNZ94UXXtC3336r+fPn67333pPb7db48ePFDQiBxkdAA36ssLBQW7du1S233CJJioqK0uHDhz2P2/vwww81efJkXX/99br66quVlpbmCd8TJ07o/fffV2pqqvr27aurrrpKzz33nH755RfPwx8ANB6/eVgGgJpycnIUEBCgyMhISVLfvn1lt9u1bNkyDRgwQAcOHFDv3r09y1955ZW6+OKLJUl79uxRRUWF7r777mrbdDqd2rVrlwYOHHj+GgI0QQQ04MdOXs4OCwvzzHO5XFq7dq1n+tTL1Senq6qqJEnvvfeeWrVqVW2Z0NDQRqoYwEkENOCnCgoKtH37dk2bNk3XXnutZ/7+/fs1btw4ffrpp7Lb7fr+++/Vs2dPSb+fNR87dhlZIwQAAAFoSURBVEyS1LFjRwUEBOjw4cPq1auXJOn48eNKSkrSI488ou7du5//RgFNCAEN+Kns7Gy1bt1ao0aNUlBQkGf+VVddpf79+2vp0qUaPXq0MjIy1KFDB7Vt21ZPP/20JMlisSgkJER33HGHnnrqKaWmpsput+v555/Xzz//rCuuuMJHrQKaDj4kBvipTz/9VLGxsdXC+aRRo0bp+++/1w033KCoqCg9/PDDuueeexQZGSmr1arAwEBJ0rRp03TdddcpMTFRI0eOlNPp1JtvvqkWLVqc7+YATY7FzfclgCZr/fr16tWrl+c95UOHDik8PFxr1qzRn//8Zx9XBzRtBDTQhE2cOFGVlZVKSkqSxWLRSy+9pH379ikrK8vXpQFNHgENNGGFhYVKTU3V5s2b5Xa7FR4erieeeELt2rXzdWlAk0dAAwBgID4kBgCAgQhoAAAMREADAGAgAhoAAAMR0AAAGIiABgDAQP8PvSuK9XXQYCYAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["plt.figure(figsize = (8,4))\n","b = sns.distplot(data['age'],kde=False,bins = 5)\n","b.set_title('Histogram of Age',fontsize = 16)\n","b.set_xlabel(\"Age\",fontsize=14)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"q94EK4C3_p1o"},"source":["__Insight: There is no significance change in the age groups__"]},{"cell_type":"markdown","metadata":{"id":"4H4-WY7r_p1p"},"source":["#### Job Hopping Index - Visual approach"]},{"cell_type":"code","execution_count":null,"metadata":{"scrolled":true,"id":"bwxbWo5n_p1p","outputId":"42079ad6-2779-4660-fbe5-eed9fdfa4a8f"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAegAAAEfCAYAAACKx1WtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de1gU9f4H8PfKrihCGbgrRmaX00KhgjcMMwg1QZFSosIblce8VJhkqCGBWt4pvEHZzy5anRRNRU3xnndNPaWZWElK3h5cQURElmX3+/vDxzmuiMvSrjuw79fz+OTOfGfm8xnI987s7IxCCCFAREREstLA0QUQERFRVQxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgKY6h188ICJnwIAmmxs8eDCGDx9+23n79++Hr68vfv31VwDAvHnz0K5duxqve/PmzUhNTbVJnXXRtGnT0LFjR7Rv3x6HDh2qMn/8+PHo06dPjdd368+jprp164bJkydbtYy9rFixAr6+vigqKrLrdqz9Xa2OnPYdyZvS0QWQc3vxxRcRGhpa4/GLFi2Cm5ubHSuSr99//x1fffUVXnnlFTz77LN4/PHHq4x54403UFZW5oDqHOeZZ57B0qVLcc8999h1O9b+rhL9Uwxocihvb294e3s7uow64fLlywCAPn36oG3btrcd8+CDD97NkmTB09MTnp6edt8Of1fpbuMpbnKoW08bHj58GAMHDkS7du0QFBSEUaNG4ezZswCunzr/6aef8OOPP8LX1xdnzpwBABw/fhxDhw5FUFAQgoKCkJiYiIsXL5ptZ/369VKwxcTEYPPmzfD19cX+/fsBXD81/MYbb2DMmDFo3749EhISAAB//fUXRo0ahSeffBKtW7dGt27dkJGRIX0OfuMU8b59+/Diiy+ibdu26NOnDw4ePIiDBw+ib9++CAgIwIABA5Cfn3/HfXGnPubNm4fBgwcDuH4kd+Pvt7r1FPfVq1cxY8YMdOvWTep9165dVZb77bffEB0djTZt2iA6Ohq7d+++Y60AUF5ejokTJyIoKAgdOnTAuHHjUFpaKs03GAz47LPPEB4ejjZt2iAqKgpr1qyR5p85cwa+vr5Yv349Bg0ahLZt26J3795Yt26dNObG/t21axf69euHtm3bIjo6Gnv37pXG3HqKu1u3bvi///s/pKamIigoCO3bt69Sm16vx4cffojg4GC0b98eEyZMwMcff4xu3bpV2++tv6u+vr5YsWIFEhIS0K5dO3Tu3BlTpkxBZWWlNEan02HUqFHo0KEDnn76aaxatarKesvKyvDBBx+gS5cuaNu2LQYPHoxjx45J84cNG4aOHTua/U4PHToUISEhKCkpqf4HRHUeA5rsQgiBysrKKn9MJlO1y1y7dg3Dhg1D8+bNkZmZiQ8++ADHjh3DO++8AwBITU3FE088gfbt22Pp0qXQaDTIzc3Fyy+/DIPBgOnTpyMpKQkHDx7EoEGDpFO9O3bsQEJCAtq0aYOMjAx06dIFY8aMqbL97du3Q6/XIyMjAy+//DKuXr2KuLg4FBcXY8aMGViwYAE6d+6MuXPnYtu2bWbLJiYmIiYmBvPnz4fJZMLo0aORlJSEV199FVOnTkVeXt4dP3e01MeLL76IlJQUANc/h67J5/AmkwlDhw7FihUrMGzYMMybNw/3338/hg0bhp07d5qNnTp1Knr06IH58+ejWbNmGD58OPLy8u64/pUrV+Ly5cuYPXs24uPjsWbNGsyfP1+aP27cOGRmZuKll17CJ598gnbt2uHdd9/FsmXLzNbz/vvvw8/PD/Pnz4e/vz/eeeedKm8ixowZg+7du2PevHnw9PTE66+/jj/++KPa2hYsWICSkhJ8/PHHGD16NH744Qd88skn0vykpCSsWLECb731Fj766CP8/fff+PLLLy3u01tNnToVnp6eyMzMxMCBA7F48WJkZWUBAIxGI/7973/j6NGj+OCDDzB+/HjMnTsXBQUF0vJCCIwcORI//PADRo8ejTlz5qBhw4YYPHgw/v77bwDA5MmTYTKZMHPmTADX35Ds3LkTU6ZMsftpfXIwQWRjgwYNElqt9o5/jhw5IoQQYu7cuSIwMFAIIcThw4eFVqsV//3vf6V17d+/X8yZM0cYjUZp3cOGDZPmv/XWW+KZZ54Rer1emvbnn38KPz8/sXjxYiGEEC+//LIYNGiQWY2TJ08WWq1W7Nu3TwghxLhx44RWqxWFhYXSmF9//VX079/fbJrRaBQdO3YU06dPF0IIsW/fPqHVasWCBQukMd99953QarVi5cqV0rT09HTRoUOHavdZTfq4sa0b++52xo0bJyIjI4UQQmzZskVotVqxY8cOszEvvfSS6Nevn9k609PTpfl6vV6EhISI9957r9rthIWFiV69egmTySRNGz58uOjbt68QQojjx48LrVYrvvvuO7PlEhISxJNPPikqKyvF6dOnhVarFaNHjzYb88ILL0g/rxv1zZo1y6y+p59+WowfP14IIcT3339v9rMLCwsTkZGRZrW9+eabok+fPkIIIf766y+h1WrF999/L80vKysTwcHBIiwsrNqeb/5dFUIIrVYrhg4dajamb9++Yvjw4UIIITZv3iy0Wq34+eefpflHjx4VWq1WTJo0SQghxI4dO4RWqxW7d++WxhgMBtGzZ0+pPyGE+M9//iO0Wq3YtGmT6NSpk3j//ferrZPqDx5Bk1106NABy5cvr/Jn0qRJ1S7zyCOPoGnTphgxYgQmT56M7du3IzAwEKNGjUKDBrf/VT1w4AC6d++Ohg0bStP+9a9/wdfXFwcOHIBer8fhw4fRvXt3s+UiIiKqrOvWzzJbt26N//znP/Dw8MCJEyewefNmzJ8/H5WVlaioqDBb9ubPhJs1ayYtf0PTpk1x5cqVanu31EdtHDhwAE2aNMHTTz9tNr1379747bffzE75hoeHS39v2LAhunbtavHK7oCAACgUCun1Aw88IJ1yPXjwIICq+7l3794oKioyOzqPjIw0G9OtWzf8/PPPZmdbbh7TsGFDPP3009I2bqdNmzZmtXl7e0tnVG7szx49ekjzGzduXKsLwAICAsxeN2/eXNrOf//7X9x7770IDAyU5vv7+8PHx0d6vX//fjRu3BidOnWSzjIBQNeuXbFv3z5pXGxsLIKCghAfHw8PDw+MGzfO6lqp7uFFYmQXHh4eaNOmTZXpd7rC2N3dHd988w0yMjKwcuVKfPvtt7jnnnuQkJCAAQMG3HaZkpISeHl5VZnu5eWF0tJSXL58GSaTqcpFRNUtc6tPP/0UCxcuxJUrV+Dj44N27dpBqVRW+S52kyZNqizbqFGjanu1to/aKCkpkd4s3OzGtKtXr5pt52aenp64cOHCHdffuHFjs9cKhULaL5cvX4ZSqUTTpk1vu+3S0lLpany1Wl1l2waDwex35XZjblw0Z21tly5dgkqlqnJ6+Hb7ypJbt9OgQQNpOyUlJbjvvvuqLHNzL8XFxbh27ZrZm7kbVCqVWf19+vTBTz/9hI4dO972943qHwY0ycpjjz2G2bNno6KiAocOHcKiRYswadIk+Pv7VzlaAYB7770XhYWFVaZfvHgRjz76KLy8vKBSqap8R7Ym35ldtWoVZs+ejdTUVPTp0wceHh4AgODg4Fp2Vz1LfdR2nbdeLAdcv3AJgFl4lpSUQKPRmG331nC1dtuVlZUoLi42W8+Nem6eVlxcbLZsYWEhXF1dzUKouLjYLEALCwtrfeW2RqOBwWBASUmJWUjb+nvUTZs2ve3P9OZ+PTw84OXlhQULFtxxXcXFxZg7dy58fX2RnZ2NF154AUFBQTatl+SHp7hJNnbs2IHg4GAUFRWhYcOGCA4Oxvvvvw8AOHfuHABUOdXdoUMHbNmyxeyUc15eHv744w+0b98eLi4uCAwMxNatW82W27Jli8V6fv75Z3h7e6N///5SOP/2228oKiqy+d3MLPVR23VevXq1ygVh69evh7+/P1xdXaVpN48pLy/Hjh07/lEAdOjQAQCQk5NjNn3dunXw8vLCQw89JE279YK7LVu2ICgoyOwU9c1jKioqsGPHDnTu3LlWtbVv3x4NGjQw+52oqKiosp/+qc6dO+PKlStmV5yfPHlSuvgLuL6fioqK4ObmhjZt2kh/1qxZg9WrV0vjpk2bBpPJhMWLF6Nz5854//33UV5ebtN6SX54BE2y0bZtWwgh8NZbb+H111+HSqXCokWLcM8990j/GN9zzz3Izc3F/v37ERAQgBEjRiA2Nhavv/46Xn31VVy5cgWzZ8+Gj48P+vbtCwB488038dprryE5ORkRERH45Zdf8M033wCoGvg3a9OmDZYsWYL58+cjKCgIeXl5yMjIgEKhsPk/jjXpw1rPPPMMAgICkJiYiISEBLRo0QIrVqzA4cOH8emnn5qNXbBgAVxdXeHj44MvvvgC165dw+uvv17rfvz8/BAeHo7p06fj6tWr8PX1xZYtW/DDDz8gJSXFbL8vW7YMnp6eaNeuHVatWoXff/9d+vnckJmZCZVKhYcffhiLFy9GWVkZhg4dWqvaWrVqhaioKHz44YcoKyuDj48PFi9eDJ1Oh/vvv7/WPd/qqaeeQqdOnZCYmIh3330Xbm5umD17ttmp67CwMLRp0wbDhg3DW2+9hRYtWmDjxo349ttvpes1du7ciVWrVmHGjBlo2rQpUlJS8Pzzz2Pu3LkYO3aszeol+WFAk2w0bdoUCxcuxEcffYSxY8fCYDCgbdu2+PLLL6XTma+++ioSEhIwdOhQLFq0CO3bt8eiRYvw8ccf4+2335Yu9klMTIS7uzuA66ekZ86ciYyMDKxatQpPPPEExowZg2nTpt3xrmTR0dE4efIklixZgoULF8LHxwf//ve/kZeXd9vbbP4TrVu3ttiHtVxcXLBw4UKkpaUhPT0d165dw+OPP47PPvsMISEhZmMnTZqEefPmIT8/H/7+/li8ePE/vulJWloa5syZg6+++grFxcV45JFHMGvWLDz33HNm40aPHo1NmzZh4cKF0Gq1WLhwYZVbao4dOxbffPMNzpw5g7Zt2+Lbb79Fy5Yta13bxIkT0ahRI8yePRuVlZXo06cPIiIicOLEiVqv81YKhQKffPIJpk6diilTpkCpVGLIkCHYtGmTNMbFxQWff/450tLSMGvWLJSWlqJVq1aYNm0aoqOjcfXqVaSmpqJTp07SG7VHH30UQ4YMwcKFC9GrV6/bXutB9YNC2PpcHZHMbN68GQ8++CC0Wq00benSpZg4cSL2799fr75LmpCQgDNnzlT5rrEcnTlzBt27d8ecOXNue1U9cP0q57i4OCxfvtxmQVRUVITdu3cjLCzM7M1PbGwsmjVrZvZdbiJH4hE01Xvbtm3Drl27MGbMGLRo0QJ5eXlIT0/Hc889V2/C+dKlS9ixYwcOHDjAi4csaNSoESZNmoScnBzExsZCqVRi/fr1+OWXX2p1sxIie2FAU72XlJSEjz76CB999BEKCwuh0WgQGxuLN99809Gl2czRo0eRmpqKli1bYuTIkY4uR9bc3NzwxRdfID09He+88w4MBgN8fX3x6aef2uUKfaLa4iluIiIiGeLXrIiIiGSIAU1ERCRDNQro7OxsREZGIjIyEjNmzABw/ek70dHRCA8Px4QJE6R7yJ47dw4DBw5EREQERo4caXY7QSIiIqoZi59BX7t2DaGhocjJycE999yD/v37IyEhAVOnTsWHH36IwMBAJCUloXXr1hgwYACGDx+O5557DpGRkcjIyEBZWRkSExNrXNClS1dhMtXtj8W9vNxRWFi7+yfXRc7UL3utv5ypX2fqFZB3vw0aKHDffbe/t7rFq7iNRiNMJhOuXbsGNzc3VFZWQqlUory8XHpKS3R0NObOnYsXX3wRBw4cQEZGhjR90KBBVgW0ySTqfEADqBc9WMOZ+mWv9Zcz9etMvQJ1s1+LAe3u7o63334bvXr1kh6LplKpzJ7IolarUVBQgEuXLsHd3R1KpdJsujW8vGp31yS5Uas9HF3CXeVM/bLX+suZ+nWmXoG62a/FgD5+/Di+//57bNu2DR4eHnj33Xexe/dusxvZCyGkx7ndPB1AldeWFBaW1sl3OjdTqz2g01X/7N/6xpn6Za/1lzP160y9AvLut0EDRbUHphYvEtu1axeCg4Ph5eWFhg0bIjo6Gvv375ceWQdcf4ScRqOBp6cnrly5AqPRCOD6Y+1ufoQdERER1YzFgPbz88OePXtQVlYGIQS2bt2KoKAguLq6Sg8MyM7ORkhICFQqFTp27Ih169YBuP483Vtvyk9ERESWWTzF3bVrVxw7dgzR0dFQqVTSo9GeffZZJCcno7S0FP7+/oiLiwMApKamYvz48fjkk0/QokULfPzxx3ZvgoiIqL6R3a0++Rl03eNM/bLX+suZ+nWmXgF59/uPPoMmIiKiu49Ps3IilSZAb6i0+XpFURnK9LZfr725qpRQ8i0qEckUA9qJ6A2VOJBr3ffSa8LDvRGulJbbfL321unx5lC68n8BIpInHj8QERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGTI4rP2li1bhm+++UZ6febMGTz//PPo0aMHpk2bBr1ej169eiEhIQEAkJubiwkTJuDq1avo2LEjJk2aBKWSj/QjIiKyhsUj6BdffBHZ2dnIzs5GWloavLy88PrrryMpKQmZmZlYt24djh49iu3btwMAEhMTkZKSgg0bNkAIgaysLLs3QUREVN9YdYp74sSJSEhIwOnTp9GqVSu0bNkSSqUSUVFRyMnJwdmzZ1FeXo7AwEAAQHR0NHJycuxSOBERUX1W44Des2cPysvL0atXL1y4cAFqtVqap9FoUFBQUGW6Wq1GQUGBbSsmIiJyAjX+cHjJkiV47bXXAAAmkwkKhUKaJ4SAQqGodro1vLzcrRovV2q1h6NLqEIUlcHDvZFd1m2v9dqTm5sr1J5uVi8nx5+tvThTr4Bz9etMvQJ1s98aBXRFRQUOHDiA6dOnAwC8vb2h0+mk+TqdDhqNpsr0ixcvQqPRWFVQYWEpTCZh1TJyo1Z7QKe74ugyqijTV+JKabnN1+vh3sgu67W3sjI9dEajVcvI9WdrD87UK+Bc/TpTr4C8+23QQFHtgWmNTnH//vvveOihh+Dmdv1oIyAgACdPnkR+fj6MRiPWrl2LkJAQ+Pj4wNXVFYcOHQIAZGdnIyQkxEZtEBEROY8aHUGfPn0a3t7e0mtXV1dMnz4d8fHx0Ov1CA0NRUREBAAgLS0NycnJKC0thb+/P+Li4uxTORERUT2mEELI6nwyT3Hbz1V9JQ7k2v6ivbp6irvT483RxNW67+jL9WdrD87UK+Bc/TpTr4C8+/3Hp7iJiIjo7mJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyZB19zmsYypNgN5Qede3K4rKUKa/+9u1pI7fQZWIyKnU64DWG+xz72lL5Hpv6gCt2tElEBFRDfEUNxERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhmoU0Fu3bkV0dDR69eqFDz/8EACwZ88eREVFoWfPnkhPT5fG5ubmIjo6GuHh4ZgwYQIqK+X3fWAiIiK5sxjQp0+fRmpqKjIzM7F69WocO3YM27dvR1JSEjIzM7Fu3TocPXoU27dvBwAkJiYiJSUFGzZsgBACWVlZdm+CiIiovrEY0Js2bULv3r3h7e0NlUqF9PR0NG7cGK1atULLli2hVCoRFRWFnJwcnD17FuXl5QgMDAQAREdHIycnx+5NEBER1TcW7ySWn58PlUqFESNG4Pz583jmmWfw2GOPQa3+312pNBoNCgoKcOHCBbPparUaBQV3/05eREREdZ3FgDYajTh48CC+/vpruLm5YeTIkWjUqBEUCoU0RggBhUIBk8l02+nW8PJyt2r8nYiiMni4N7LZ+qzhqO3eiUqltFtdcuzXEjc3V6g93axeTq32sEM18uRMvQLO1a8z9QrUzX4tBnSzZs0QHBwMT09PAECPHj2Qk5MDFxcXaYxOp4NGo4G3tzd0Op00/eLFi9BoNFYVVFhYCpONnupQpq90yD2x5XovboPBPvtDrv1aUlamh85otGoZtdoDOt0VO1UkL87UK+Bc/TpTr4C8+23QQFHtganFz6DDwsKwa9culJSUwGg0YufOnYiIiMDJkyeRn58Po9GItWvXIiQkBD4+PnB1dcWhQ4cAANnZ2QgJCbFtN0RERE7A4hF0QEAAhg4digEDBsBgMOCpp55C//798cgjjyA+Ph56vR6hoaGIiIgAAKSlpSE5ORmlpaXw9/dHXFyc3ZsgIiKqb2r0uMmYmBjExMSYTQsODsbq1aurjPXz88Py5cttUx0REZGT4p3EiIiIZIgBTUREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEPKmgwaPHgwioqKoFReHz558mT8/fff+OSTT1BZWYlXXnkFAwcOBADs2bMH06ZNg16vR69evZCQkGC/6omIiOopiwEthMCpU6ewbds2KaALCgqQkJCAFStWoGHDhoiNjUXnzp3xwAMPICkpCV9//TVatGiB4cOHY/v27QgNDbV7I0RERPWJxYD+66+/AABDhgxBcXExXnrpJTRp0gRPPvkkmjZtCgAIDw9HTk4OgoKC0KpVK7Rs2RIAEBUVhZycHAY0ERGRlSx+Bl1SUoLg4GBkZGTgq6++wpIlS3Du3Dmo1WppjEajQUFBAS5cuHDb6URERGQdi0fQ7dq1Q7t27aTXMTExmDZtGkaOHClNE0JAoVDAZDJBoVBUmW4NLy93q8bfiSgqg4d7I5utzxqO2u6dqFRKu9Ulx34tcXNzhdrTzerl1GoPO1QjT87UK+Bc/TpTr0Dd7NdiQB88eBAGgwHBwcEAroeuj48PdDqdNEan00Gj0cDb2/u2061RWFgKk0lYtUx1yvSVuFJabpN1WcPDvZFDtmuJwWCf/SHXfi0pK9NDZzRatYxa7QGd7oqdKpIXZ+oVcK5+nalXQN79NmigqPbA1OIp7itXrmDmzJnQ6/UoLS3FypUrMWvWLOzduxdFRUW4du0aNm7ciJCQEAQEBODkyZPIz8+H0WjE2rVrERISYvOGiIiI6juLR9BhYWE4fPgw+vbtC5PJhAEDBqBDhw5ISEhAXFwcDAYDYmJi0LZtWwDA9OnTER8fD71ej9DQUERERNi9CSIiovpGIYSwzflkG7HlKe6r+kocyL37F6nJ9ZRvgFaNw3/oLA+0klz7taTT483RxLVGtwKQyPlUma05U6+Ac/XrTL0C8u73H53iJiIioruPAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDNQ7oGTNmYPz48QCA3NxcREdHIzw8HBMmTEBlZSUA4Ny5cxg4cCAiIiIwcuRIXL161T5VExER1XM1Cui9e/di5cqV0uvExESkpKRgw4YNEEIgKysLADBp0iQMGDAAOTk5aN26NTIzM+1TNRERUT1nMaCLi4uRnp6OESNGAADOnj2L8vJyBAYGAgCio6ORk5MDg8GAAwcOIDw83Gw6ERERWU9paUBKSgoSEhJw/vx5AMCFCxegVqul+Wq1GgUFBbh06RLc3d2hVCrNplvLy8vd6mWqI4rK4OHeyGbrs4ajtnsnKpXSbnXJsV9L3NxcofZ0s3o5tdrDDtXIkzP1CjhXv87UK1A3+71jQC9btgwtWrRAcHAwVqxYAQAwmUxQKBTSGCEEFAqF9N+b3fq6JgoLS2EyCauXu50yfSWulJbbZF3W8HBv5JDtWmIw2Gd/yLVfS8rK9NAZjVYto1Z7QKe7YqeK5MWZegWcq19n6hWQd78NGiiqPTC9Y0CvW7cOOp0Ozz//PC5fvoyysjIoFArodDppzMWLF6HRaODp6YkrV67AaDTCxcUFOp0OGo3Gtp0QERE5iTt+Bv3ll19i7dq1yM7OxqhRo9CtWzdMmzYNrq6uOHToEAAgOzsbISEhUKlU6NixI9atWwcAWLVqFUJCQuzfARERUT1Uq+9Bp6WlYdq0aYiIiEBZWRni4uIAAKmpqcjKykLv3r1x8OBBjB492qbFEhEROQuLF4ndEB0djejoaACAn58fli9fXmWMj48Pvv76a9tVR0RE5KR4JzEiIiIZYkATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDNb5RCVF9o2igwFV9pVXLiKIylFm5TF3gqlJCybfrRLLCgCanpTcYcfgPneWBN6mrT+6ypNPjzaF05T8HRHLC98xEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREclQjQJ6zpw56N27NyIjI/Hll18CAPbs2YOoqCj07NkT6enp0tjc3FxER0cjPDwcEyZMQGVl/bupAxERkb1ZDOiffvoJ+/btw+rVq/H999/j66+/xvHjx5GUlITMzEysW7cOR48exfbt2wEAiYmJSElJwYYNGyCEQFZWlt2bICIiqm8sBnRQUBAWL14MpVKJwsJCGI1GlJSUoFWrVmjZsiWUSiWioqKQk5ODs2fPory8HIGBgQCA6Oho5OTk2L0JIiKi+qZGp7hVKhXmzp2LyMhIBAcH48KFC1Cr1dJ8jUaDgoKCKtPVajUKCgpsXzUREVE9V+Ob744aNQqvv/46RowYgVOnTkGhUEjzhBBQKBQwmUy3nW4NLy93q8bfiSgqg4d7I5utzxqO2u6dqFRKu9Ulx34tqe3+qOZR9NkAABXfSURBVIu9WuLm5gq1p1uV6Wq1hwOqcRxn6teZegXqZr8WAzovLw8VFRV4/PHH0bhxY/Ts2RM5OTlwcXGRxuh0Omg0Gnh7e0On+9/DBy5evAiNRmNVQYWFpTCZhFXLVKdMX+mQBxvI9YEKBoN99odc+7WkNvujrvZqSVmZHjqj0WyaWu0Bne6Kgyq6+5ypX2fqFZB3vw0aKKo9MLV4ivvMmTNITk5GRUUFKioqsGXLFsTGxuLkyZPIz8+H0WjE2rVrERISAh8fH7i6uuLQoUMAgOzsbISEhNi2GyIiIidg8Qg6NDQUR44cQd++feHi4oKePXsiMjISnp6eiI+Ph16vR2hoKCIiIgAAaWlpSE5ORmlpKfz9/REXF2f3JoiIiOqbGn0GHR8fj/j4eLNpwcHBWL16dZWxfn5+WL58uW2qIyIiclK8kxgREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEMMaCJiIhkqEYBPX/+fERGRiIyMhIzZ84EAOzZswdRUVHo2bMn0tPTpbG5ubmIjo5GeHg4JkyYgMrKSvtUTkREVI9ZDOg9e/Zg165dWLlyJVatWoXffvsNa9euRVJSEjIzM7Fu3TocPXoU27dvBwAkJiYiJSUFGzZsgBACWVlZdm+CiIiovrEY0Gq1GuPHj0fDhg2hUqnw6KOP4tSpU2jVqhVatmwJpVKJqKgo5OTk4OzZsygvL0dgYCAAIDo6Gjk5OXZvgoiIqL6xGNCPPfaYFLinTp3C+vXroVAooFarpTEajQYFBQW4cOGC2XS1Wo2CggI7lE1ERFS/KWs68M8//8Tw4cMxduxYuLi44NSpU9I8IQQUCgVMJhMUCkWV6dbw8nK3avydiKIyeLg3stn6rOGo7d6JSqW0W11y7NeS2u6PutirJW5urlB7ulWZrlZ7OKAax3Gmfp2pV6Bu9lujgD506BBGjRqFpKQkREZG4qeffoJOp5Pm63Q6aDQaeHt7m02/ePEiNBqNVQUVFpbCZBJWLVOdMn0lrpSW22Rd1vBwb+SQ7VpiMNhnf8i1X0tqsz/qaq+WlJXpoTMazaap1R7Q6a44qKK7z5n6daZeAXn326CBotoDU4unuM+fP48333wTaWlpiIyMBAAEBATg5MmTyM/Ph9FoxNq1axESEgIfHx+4urri0KFDAIDs7GyEhITYsBUiIiLnYPEI+vPPP4der8f06dOlabGxsZg+fTri4+Oh1+sRGhqKiIgIAEBaWhqSk5NRWloKf39/xMXF2a96IiKiespiQCcnJyM5Ofm281avXl1lmp+fH5YvX/7PKyMiInJivJMYERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDNX4aVZEVH8pGihwVV9pNk0UlaHslmn12c39uqqUUPLwhRyMAU1E0BuMOPyHzmxafX1yV3Vu7rfT482hdOU/j+RYfI9IREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEM1TigS0tL0adPH5w5cwYAsGfPHkRFRaFnz55IT0+XxuXm5iI6Ohrh4eGYMGECKiud50YHREREtlKjgD58+DD69++PU6dOAQDKy8uRlJSEzMxMrFu3DkePHsX27dsBAImJiUhJScGGDRsghEBWVpbdiiciIqqvahTQWVlZSE1NhUajAQAcOXIErVq1QsuWLaFUKhEVFYWcnBycPXsW5eXlCAwMBABER0cjJyfHftUTERHVUzW6l92UKVPMXl+4cAFqtVp6rdFoUFBQUGW6Wq1GQUGBjUolIiJyHrW62azJZIJCoZBeCyGgUCiqnW4NLy/32pR0W6KoDB7ujWy2Pms4art3olIp7VaXHPu1pLb7oy72akl1+6I+9nonN/p1c3OF2tPNwdXYl1rt4egS7qq62G+tAtrb2xs63f9urK/T6aDRaKpMv3jxonRavKYKC0thMonalFVFmb7SITf7l+tDBgwG++wPufZrSW32R13t1ZLb7Yv62mt1bu63rEwPndHo4IrsR632gE53xdFl3DVy7rdBA0W1B6a1+ppVQEAATp48ifz8fBiNRqxduxYhISHw8fGBq6srDh06BADIzs5GSEhI7SsnIiJyUrU6gnZ1dcX06dMRHx8PvV6P0NBQREREAADS0tKQnJyM0tJS+Pv7Iy4uzqYFExEROQOrAnrr1q3S34ODg7F69eoqY/z8/LB8+fJ/XhkREZET453EiIiIZIgBTUREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZKhWt/okIqrPFA0UuKqvdHQZdiOKylBmRX+uKiWUPJy76xjQRES30BuMOPyHzvLAOsraJ5V1erw5lK6Mi7uNe5yIiO6orp9RsPaMwZ3czbMJDGgiIrqjun5GwZbPNr+bZxP4qQIREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyZBdAnrNmjXo3bs3evbsiW+//dYemyAiIqrXbH6teEFBAdLT07FixQo0bNgQsbGx6Ny5M/71r3/ZelNERET1ls0Des+ePXjyySfRtGlTAEB4eDhycnLw1ltv1Wj5Bg0UNqtF6dIAbo1UNltfTTV2VcJYefe3a4m99odc+7WkNvujrvZqye32RX3ttTo39+uofzvuFmt/tnV9f9jyd1np0sCmOXWnddk8oC9cuAC1Wi291mg0OHLkSI2Xv+++Jjat54EW99p0fXXdIw/c5+gSZIX743+4L8xxf5jj/rj7bP4ZtMlkgkLxv3cEQgiz10RERGSZzQPa29sbOt3/bgmn0+mg0WhsvRkiIqJ6zeYB3aVLF+zduxdFRUW4du0aNm7ciJCQEFtvhoiIqF6z+WfQzZs3R0JCAuLi4mAwGBATE4O2bdvaejNERET1mkIIIRxdBBEREZnjncSIiIhkiAFNREQkQwxoIiIiGWJAExERyZDNr+J2dqWlpYiNjcWnn36KBx54wNHl2NX8+fOxfv16AEBoaCjGjh3r4IrsZ86cOdiwYQMUCgViYmLw2muvOboku5sxYwYuXbqE6dOnO7oUuxo8eDCKioqgVF7/53Dy5MkICAhwcFX2sXXrVsyfPx/Xrl3DU089heTkZEeXZDfLli3DN998I70+c+YMnn/+eaSkpDiwKisJsplffvlF9OnTR/j7+4vTp087uhy72r17t3j55ZeFXq8XFRUVIi4uTmzcuNHRZdnF/v37RWxsrDAYDOLatWsiLCxM5OXlObosu9qzZ4/o3LmzGDdunKNLsSuTySS6du0qDAaDo0uxu7///lt07dpVnD9/XlRUVIj+/fuLH3/80dFl3RV//PGHePbZZ0VhYaGjS7EKT3HbUFZWFlJTU53izmlqtRrjx49Hw4YNoVKp8Oijj+LcuXOOLssugoKCsHjxYiiVShQWFsJoNMLNzc3RZdlNcXEx0tPTMWLECEeXYnd//fUXAGDIkCF47rnnzI646ptNmzahd+/e8Pb2hkqlQnp6er09U3CriRMnIiEhAZ6eno4uxSo8xW1DU6ZMcXQJd81jjz0m/f3UqVNYv349vvvuOwdWZF8qlQpz587FF198gYiICDRv3tzRJdlNSkoKEhIScP78eUeXYnclJSUIDg7G+++/D4PBgLi4ODz88MN46qmnHF2azeXn50OlUmHEiBE4f/48nnnmGYwePdrRZdndnj17UF5ejl69ejm6FKvxCJr+kT///BNDhgzB2LFj8dBDDzm6HLsaNWoU9u7di/PnzyMrK8vR5djFsmXL0KJFCwQHBzu6lLuiXbt2mDlzJjw8PODp6YmYmBhs377d0WXZhdFoxN69ezF16lQsXboUR44cwcqVKx1dlt0tWbKkzl4zwoCmWjt06BBeffVVjBkzBv369XN0OXaTl5eH3NxcAEDjxo3Rs2dP/P777w6uyj7WrVuH3bt34/nnn8fcuXOxdetWTJ061dFl2c3Bgwexd+9e6bUQQrpYrL5p1qwZgoOD4enpiUaNGqFHjx5WPQq4LqqoqMCBAwfQrVs3R5dSKwxoqpXz58/jzTffRFpaGiIjIx1djl2dOXMGycnJqKioQEVFBbZs2YIOHTo4uiy7+PLLL7F27VpkZ2dj1KhR6NatG5KSkhxdlt1cuXIFM2fOhF6vR2lpKVauXIlnn33W0WXZRVhYGHbt2oWSkhIYjUbs3LkT/v7+ji7Lrn7//Xc89NBDdfaakfr5VpHs7vPPP4derzf7Ck5sbCz69+/vwKrsIzQ0FEeOHEHfvn3h4uKCnj171vs3Jc4iLCwMhw8fRt++fWEymTBgwAC0a9fO0WXZRUBAAIYOHYoBAwbAYDDgqaeewgsvvODosuzq9OnT8Pb2dnQZtcaHZRAREckQT3ETERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImscObMGfj6+iI/P/+O4/bv3w9fX19UVlbWaL3jx4/Hu+++a4sSrWbPbfv6+mLPnj21WjY9PR2DBw+2cUVEdQe/B01khRYtWmDXrl117qb7dzJhwgS7rXvXrl2499577bZ+ovqMAU1kBRcXF6jVakeXYVMeHh52W3d921dEdxNPcRNZ4eZT3JcvX8b777+PLl26oH379hgzZgyKi4vNxn/77bd48skn0blzZ3zyySd3XPfVq1cxZswYBAYG4plnnsGqVaukeXq9HmlpaQgNDUVgYCBGjBiBs2fPmtW0evVqhISEoGPHjpg8eTIMBgMAYMWKFXjppZeQnp6O9u3bIzQ0FEuWLJHWffMp7nnz5iEhIQGTJ09Ghw4dEBYWhgULFkhjTSYT0tLS0LlzZ3Tu3BmZmZl49tlnsX///tv2dPMp7m7duuGbb75BbGwsAgICEBMTY3Yv6BMnTqB///4ICAjAa6+9VmVfHjx4EDExMWjbti0iIyOl/aPX6xEeHo7ExERpbGpqKnr16oWKioo77nMiOWNAE9XSW2+9hdzcXHz66af46quvcPLkSYwdO9ZszNq1a/HFF19g6tSp+OKLL7Bs2bJq17d161ZotVqsWbMGvXr1QnJyshRSqamp2LhxI2bMmIGlS5eisrISI0eOhNFolJbPyMjAxx9/jIyMDGzevBmzZ8+W5h07dgxHjx7FkiVLMGrUKHz44YfVPrVp06ZNcHFxwbJly/Dyyy/j448/xokTJwAACxYswKpVq5CWloYvv/wSP/74I06fPl3jfTZ//nwMHToUS5cuhaurKz744AMA1x9qMGzYMDzwwANYsWIFevToYbavdDodhg0bhqioKKxZswZvvvkmPvzwQ2zduhWurq6YPHky1qxZg0OHDuHgwYNYvnw5pk2bhoYNG9a4NiLZEURUY6dPnxZarVbk5uYKrVYrTpw4Ic3Ly8sTWq1W/PHHH2Lfvn1Cq9WK48ePS/PnzZsn+vXrd9v1jhs3TrzwwgvS65KSEqHVasXBgwdFcXGx8PPzEz/++KM0/9KlSyIgIEBs27ZNqmnjxo3S/OXLl4ugoCBhNBrF999/L/z9/YVOp5Pmjx07VowcOVLa9pgxY4QQQsydO1c8+eSTorKyUhobFBQkVq5cKYQQomvXrmLJkiVVet63b99t+9JqtWL37t1CCCHCwsLEtGnTpHmbN28Wfn5+Qgghtm3bJgIDA0Vpaak0Pz4+XgwaNEgIIUR6eroYMWKE2brnzZsn4uLipNdJSUmiX79+Ijw8XEyfPv229RDVJTyCJqqFHTt2oEmTJnj00UelaY888gjuvfde5OXlAQAaNmwIX19faf4TTzyBkydPVrvOBx98UPr7jc+FKyoqcOrUKZhMJgQEBEjzmzZtiocffljaFgCzhzy0bt0axcXFuHjxIgCgZcuWaNasmdn8m5e9mY+PD1xcXKTXTZo0gcFgQFFRES5cuIA2bdpU6bmmWrZsKf3d3d0dJpMJRqMRJ06cQMuWLdGkSROzGm/466+/sHPnTrRr1076s2DBApw6dUoaM27cOJw7dw56vR6jR4+ucU1EcsWLxIhqwdXV9bbTjUYjTCYTAKBBA/P3vyaT6Y7PGr51PHD9+cR32tbNp7hvDtVba7h1u0aj8bbbAwCVSnXb6TfWIW55vs6tr+/kdqecbyx/63purrmyshKRkZF44403zMbc3MO5c+dQWlqK0tJSnDx5En5+fjWui0iOeARNVAtPP/00rl69anYUeuLECZSWluLhhx8GAJSXl+Pvv/+W5v/6669mR9w19eCDD0KpVOLw4cPStEuXLiE/Px+PPPKINO348ePS348ePYpmzZrBy8sLwPXH7pWWlprNv/novibuueceaDQa/Pbbb9K006dPo6SkxOqebvXYY4/h77//xuXLl6Vpx44dk/7+8MMP49SpU2jVqpX0Z9euXVi+fDmA629IkpOT0a9fPzz33HOYMGGC2ZsXorqIAU1UCy4uLggLC8O4ceNw5MgRHDlyBOPGjUOHDh3w+OOPA7h+dDd+/HgcO3YMOTk5WLx4MV577TWrt+Xm5obY2FhMmTIF+/btw++//46xY8eiefPmePrpp6VxU6dOxa+//oq9e/di7ty5GDBgABQKBQDg2rVrSElJQV5eHrKyspCTk4OBAwdaXcvgwYMxf/587N69G8ePH8d7770HANJ2aqtLly64//77kZSUhBMnTmD58uXYsGGDNH/AgAHIzc3FRx99hFOnTiEnJwezZs1C8+bNAQCLFy/G6dOn8c477+Ddd9/F6dOnsXjx4n9UE5Gj8RQ3US1Nnz4dH3zwAV599VW4uLige/fuUmAB1484u3XrhldeeQUqlQrx8fEIDw+v1bYSExMhhMDbb7+NiooKdOnSBYsWLTI7/R0ZGYkRI0bAaDQiNjYWI0eOlOZpNBr4+PggJiYGarUaM2fORKdOnayuY8iQIbhw4QLefvttuLi4YOjQofj555+rPS1eUyqVCp999hmSk5MRHR0NPz8/DBgwQDqK9vHxwYIFC6Srx9VqNeLj4zFgwACcO3cOc+bMwXvvvYf77rsPADB69GjMmjULzz77LB544IF/VBuRoyiENR8gETm5/Px89OzZE9u2bcP999/v6HIAXP8edPfu3bFx40a0atWqyvwVK1Zg9uzZ2LFjxz/e1o4dO9C6dWvpTmpFRUUIDg7Gli1bGIRENsZT3EQ1VFBQgJ07d0KlUtWrW31aY+nSpXjvvfdw4sQJ5OXlYeLEiWjTpg3DmcgOGNBENfTVV18hPT0dw4cPR6NGjRxdjkOkpKTAxcUFsbGxeOmll2AymZCRkeHosojqJZ7iJiIikiEeQRMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZOj/AROgDnnMFg1MAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["plt.figure(figsize = (8,4))\n","b = sns.distplot(data['jhi'],kde=False,bins=6)\n","b.set_title('Histogram of job hopping index',fontsize = 16)\n","b.set_xlabel(\"job hopping index\",fontsize=14)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"tDP6zr5V_p1q"},"source":["__Insight: Maximum job hopping index ranges from 0.5 to 3__"]},{"cell_type":"markdown","metadata":{"id":"5lh8E7zy_p1q"},"source":["#### Job Hopping Index - Metric approach "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e5rkX7Eu_p1q","outputId":"4fe03cb5-e719-457e-ba88-413924899549"},"outputs":[{"data":{"text/plain":["count 1999.000000\n","mean 2.367537\n","std 1.272728\n","min 0.500000\n","25% 1.400000\n","50% 2.142857\n","75% 3.000000\n","max 7.333333\n","Name: jhi, dtype: float64"]},"execution_count":47,"metadata":{},"output_type":"execute_result"}],"source":["data[\"jhi\"].describe()"]},{"cell_type":"markdown","metadata":{"id":"_ok3l09W_p1r"},"source":["__Insight: Higher job hoping index at 7.5 and lower at 0.5__"]},{"cell_type":"markdown","metadata":{"id":"VC0wsH53_p1s"},"source":["#### Days Offered - Visual approach"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aKzJNakB_p1s","outputId":"15647066-c2e1-43d8-8628-f8b0a0e666ef"},"outputs":[{"data":{"text/plain":["Index(['age', 'career_growth', 'days_offered', 'distance_from_home',\n"," 'education_level', 'flexi_work', 'gender', 'jhi', 'marital_status',\n"," 'offer_dropped', 'percent_hike', 'sourcing_channel',\n"," 'timely_communication', 'total_rounds'],\n"," dtype='object')"]},"execution_count":48,"metadata":{},"output_type":"execute_result"}],"source":["data_final.columns"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EABHJxQ4_p1t","outputId":"5d173add-bf69-40a6-d42f-e159d9e9c1b1"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAegAAAEfCAYAAACKx1WtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deViU5d4H8O/gDCCCGTajpkS5kF5gUG5QCi5HQGFSyTyoYWWlmaDZUY8QbxwslYykyLVjWanvm4gbeRRNT9GCaZnha+GSihs2jODCsAyz3O8fvs4RlRjgAR7G7+e6uvJZ5ub3m/sZvjzPbAohhAARERHJilNzF0BERES3Y0ATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImaSExMDKZOndrcZdTZ999/j+HDh6N379548803YTKZMHv2bAQEBKBfv364cOFCk9c0dOhQzJ8/v8l/LlFTUjZ3AUQkb++++y5cXV3xz3/+E506dcK3336LL774An/729/w6KOPolOnTs1dIpFDYkAT0Z+6cuUKQkJCEBgYCAD4+eefAQBjx46Fp6dnc5ZG5NB4iZuoEZSVlSExMRH9+/fHgAED8OGHH1bbXlRUhPj4eAwcOBC+vr4YOHAgFixYgKqqKgBAXFwcIiMjbxs3LCwMb7/9NgAgJycHUVFR8Pf3R1BQEOLj43HlypU61/n2229j6NCheOSRRzB27Fh89913AIDz58/j4YcfxoULF/Df//3fePjhhzFv3jzMmzcPABAUFGT7d3l5Od588008/vjjeOSRRxATE4PffvvN9nM2b96MAQMGYPXq1RgwYADCwsJQUVEBAPjss88QGhoKPz8/REREYMeOHdVq1Ov1mDFjBvr06YNBgwZh69atdeqRqKXiGTRRI3jttdfwyy+/YO7cuWjXrh0++OADnDx5Ek888QSsVitefPFFKBQKJCUlwd3dHd999x1Wr16NBx54ADExMRg1ahSmT5+OY8eO4eGHHwYAHD58GAUFBRg1ahQuXLiA2NhY/PWvf8Xf//53XLx4ESkpKTAajViyZIldNd6o49SpU5g1axY6deqETZs2YcqUKVi1ahUGDBiADRs2IDY2Fo899hgmT56Mtm3bomPHjlixYgVWr14Nb29vCCEwbdo0HDt2DK+99hrUajXWrVuHmJgYbNmyBQ888AAAoLS0FJs3b0ZqairKysrQunVrLF26FCtWrMBLL72Evn37IicnB6+99hoUCgVGjBgBi8WCF154AQaDAW+++SaEEHj33Xeh0+kabe6IZEMQkaTy8/OFj4+P+Ne//mVbp9PphJ+fn5gyZYooLCwUzzzzjMjPz692O61WK+Li4oQQQlRVVYnAwECRmppq2/7WW2+JyMhIIYQQO3bsED4+PkKn09m27969W6xZs8buOvfu3St8fHzEN998U239uHHjxJgxY2zLQ4YMEcnJybblTZs2CR8fH1FcXCyEEOKbb74RPj4+4vvvv7ftYzKZRGhoqJg3b1612+zcudO2z9WrV0Xv3r3FkiVLqv38+Ph4MWzYMCGEEHv27BE+Pj7i0KFDtu1HjhwRPj4+1WoickS8xE0ksRvP0QYHB9vWaTQaBAQEAAA6deqEtWvXwsfHBwUFBfj666+xcuVKFBcX2y5xq1QqRERE4F//+hcAwGKxYMeOHRg1ahQAwM/PD87Oznj66afx9ttvY//+/Rg6dCiee+45u+v88ccf0aZNGwwaNKja+pEjR+LXX3+FwWCwa5z9+/ejdevW6NevH8xmM8xmMwBg4MCB+OGHH6rt2717d9u/f/nlFxiNRgwePNh2O7PZjODgYJw7dw7nzp3Dzz//jHvuucd23wGAr68vOnfubHefRC0VL3ETSezatWtQqVRwd3evtl6tVqOsrAwAsHHjRrz33nu4dOkS1Go1/P394eLiAnHTl8uNHj0aa9euxaFDh2AwGFBSUgKtVgsA8PLywieffIIPP/wQ69atw8cffwy1Wo2kpCQMHz7c7jrvu+++29bfWFdWVnZbD3dy5coVVFRUwM/P77ZtKpWq2vLNLyq78Xx5dHT0HcfV6/W4du0a7r333tu2qdXqWusiaukY0EQSa9euHUwmE65du4a2bdva1l+5cgUqlQoHDhzAf/3Xf+GVV17BM888YwutsWPHVhvHz88PPXr0wK5du1BWVobAwEB06NDBtr1Pnz5YtWoVKioqsG/fPqxevRozZ87EV199VW2/mtxzzz24dOnSbev1er2tD3t4eHigffv2WLVqlV3733w7AFi2bNkd633ooYfQrl07FBcX37atri+GI2qJeImbSGL9+/cHAOzevdu27urVq/jll18AXL+0q1AoMG3aNFs463Q6HD9+vNoZNAA8+eST2Lt3L77++mvb5W3g+hn4sGHDYDKZ0Lp1awwdOhSvvvoqLBaL3S+g6tOnD8rKyvDtt99WW79z5074+vrCxcXF7nFKSkrg5uaG3r172/774osvkJWVVePt/P39oVKpUFxcXO12J06cwLJlywAAAwYMQGlpKfbt22e73enTp3H27Fm7aiNqyXgGTSSxrl274sknn8TChQthNBpx//33Y9WqVbbnZnv37g2r1YqFCxciPDwcFy9exIoVK1BVVWV769ENo0aNQlpaGlxcXKpduu7bty/0ej1mzpyJCRMmwGQyYcWKFejSpQt69eplV52DBw+Gv78/5syZY3sV9+bNm5GXl4eVK1fa3e+QIUPQu3dvTJkyBbGxsejUqRN2796N9evXIzk5ucbbeXp6IiYmBikpKbh69SoeeeQRHD16FGlpaRg2bBjc3d3xxBNPoF+/fpgzZw5mz54NNzc3vPfee7ddOidyRAxookawYMECeHp64oMPPoDJZMLYsWPRoUMHVFZW2t6z/Omnn2LTpk3o2LEjRowYAaVSiU8//RRVVVVwdnYGAHTo0AEPP/wwunfvjjZt2tjGf+ihh7By5Uqkp6djxowZAK6fbaamptodXq1atcLq1auRmpqKtLQ0VFRUoFevXvjwww+rvcDNnnE++ugjpKam4p133oHBYIC3tzcWLVqEqKioP73tnDlz4OnpiYyMDKSnp0Oj0eDZZ59FbGwsAEChUGDFihVYuHAhFixYAKVSicmTJ+PLL7+0uz6ilkohbr2mRkSyUVRUhMGDB2P16tV4/PHHm7scImpCDGgiGTp79iyysrKwZ88eWCwWZGVlQaFQ2HVbIQQsFkut+ymVvIBGJGd8hBLJkBACn376Kdq3b4/33nvP7nAGgC1btiA+Pr7W/Y4dO9aQEomokfEMmsjBXL58GefPn691v969ezdBNURUXwxoIiIiGeL7oImIiGSIAU1ERCRDsnuR2OXLZbBaG3bVvX17dxQX2/dB/y0Ve2z5HL0/gD06AkfvD2jeHp2cFLj33jZ33Ca7gLZaRYMD+sY4jo49tnyO3h/AHh2Bo/cHyLNHXuImIiKSIQY0ERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREckQA5qIiEiGZPc+aCmZrYDRZG7uMqpxUSmh5J9FRERUC4cOaKPJjB/zdc1dRjX9enWA0sWh73YiIpIAz+WIiIhkiAFNREQkQwxoIiIiGWJAExERyZDdAf32229j3rx5AID8/HxERUUhLCwMr7/+Oszm66+ULiwsxMSJExEeHo5p06ahrKyscaomIiJycHYF9L59+7Blyxbb8pw5c/DGG29g165dEEIgIyMDAJCcnIwJEyYgOzsbfn5+WL58eeNU3YIpnBQoM5ob/F9RSbkk45QZzTBbm/teISKiW9X6fp8rV64gLS0NL7/8Mo4ePYoLFy6gsrISAQEBAICoqCikp6fj6aefxo8//ohly5bZ1j/zzDOYM2dO43bQwhhNFuQd1zd4HA93V5QaKiWoiG/9IiKSo1rPoN944w3MmjULbdu2BQAUFRVBrVbbtqvVauh0Oly+fBnu7u5QKpXV1hMREVHd/elp08aNG9GpUycEBQVh8+bNAACr1QqFQmHbRwgBhUJh+//Nbl22R/v27nW+zZ2o1R4QJeXwcHeVZDypqFRKyWqSahw3NxeoPd0kGUtqarVHc5fQqBy9P4A9OgJH7w+QZ49/GtA7duyAXq/HqFGjcPXqVZSXl0OhUECv/88l2kuXLkGj0cDT0xOlpaWwWCxo1aoV9Ho9NBpNnQsqLjbAahV17+QmarUH9PpSlBvNkl0GlorJJE1NUl7iLi83Qm+xSDKWlG7Mo6Ny9P4A9ugIHL0/oHl7dHJS1Hhi+qeXuNesWYPt27dj27ZtmDFjBoYOHYpFixbBxcUFBw8eBABs27YNwcHBUKlU6Nu3L3bs2AEA2Lp1K4KDgyVuhYiI6O5Qr/dBp6amYtGiRQgPD0d5eTkmTZoEAEhKSkJGRgZGjhyJn376Ca+++qqkxRIREd0t7H7pblRUFKKiogAAPXv2RGZm5m37dO7cGWvXrpWuOiIiorsUP0mMiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJkF0B/f7772PkyJGIiIjAmjVrAADx8fEIDQ3FqFGjMGrUKHz55ZcAgNzcXGi1WoSGhiItLa3xKiciInJgytp2OHDgAH744QdkZWXBbDZj5MiRCAkJwZEjR7Bu3TpoNBrbvpWVlUhISMDatWvRqVMnTJ06FTk5OQgJCWnUJoiIiBxNrWfQ/fv3x2effQalUoni4mJYLBa4urqisLAQCQkJ0Gq1SE9Ph9VqxeHDh+Ht7Q0vLy8olUpotVpkZ2c3RR9EREQOxa5L3CqVCunp6YiIiEBQUBDMZjMCAwOxcOFCZGRk4KeffkJmZiaKioqgVqttt9NoNNDpdI1WPBERkaOq9RL3DTNmzMBLL72El19+Gfv27cOyZcts22JiYrB161aEhYVBoVDY1gshqi3bo3179zrtXxO12gOipBwe7q6SjCcVlUopWU1SjePm5gK1p5skY0lNrfZo7hIalaP3B7BHR+Do/QHy7LHWgD558iSqqqrQq1cvtG7dGqGhodixYwfatWuHsLAwANeDWKlUomPHjtDr9bbb6vX6as9R26O42ACrVdSxjerUag/o9aUoN5pRaqhs0FhSM5mkqcnD3VWy3srLjdBbLJKMJaUb8+ioHL0/gD06AkfvD2jeHp2cFDWemNZ6ifv8+fNITExEVVUVqqqqsHfvXvTr1w8LFy7E1atXYTKZsGHDBgwfPhz+/v44ffo0zpw5A4vFgu3btyM4OFjyhoiIiBxdrWfQISEhOHz4MEaPHo1WrVohNDQUsbGxuPfeezF+/HiYzWaEhoYiMjISAJCSkoK4uDgYjUaEhIQgPDy80ZsgIiJyNAohRMOuJ0tMykvcZUYzfsyX14vU/H3UyDuur33HWkh5ibtfrw5o42L3yxGajKNfWnP0/gD26AgcvT+gBV/iJiIioqbHgCYiIpIhBjQREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIbsCuj3338fI0eOREREBNasWQMAyM3NhVarRWhoKNLS0mz75ufnIyoqCmFhYXj99ddhNpsbp3IiIiIHVmtAHzhwAD/88AOysrKwadMmrF27FkePHkVCQgKWL1+OHTt24MiRI8jJyQEAzJkzB2+88QZ27doFIQQyMjIavQkiIiJHU2tA9+/fH5999hmUSiWKi4thsVhw7do1eHt7w8vLC0qlElqtFtnZ2bhw4QIqKysREBAAAIiKikJ2dnajN0FERORolPbspFKpkJ6ejo8//hjh4eEoKiqCWq22bddoNNDpdLetV6vV0Ol0dSqofXv3Ou1fE7XaA6KkHB7urpKMJxWVSilZTVKN4+bmArWnmyRjSU2t9mjuEhqVo/cHsEdH4Oj9AfLs0a6ABoAZM2bgpZdewssvv4yCggIoFArbNiEEFAoFrFbrHdfXRXGxAVarqNNtbqVWe0CvL0W50YxSQ2WDxpKaySRNTR7urpL1Vl5uhN5ikWQsKd2YR0fl6P0B7NEROHp/QPP26OSkqPHEtNZL3CdPnkR+fj4AoHXr1ggNDcX+/fuh1+tt++j1emg0GnTs2LHa+kuXLkGj0TS0fiIiortOrQF9/vx5JCYmoqqqClVVVdi7dy+io6Nx+vRpnDlzBhaLBdu3b0dwcDA6d+4MFxcXHDx4EACwbds2BAcHN3oTREREjqbWS9whISE4fPgwRo8ejVatWiE0NBQRERHw9PREXFwcjEYjQkJCEB4eDgBITU1FYmIiDAYDfH19MWnSpEZvgoiIyNHY9Rx0XFwc4uLiqq0LCgpCVlbWbfv27NkTmZmZ0lRHRER0l+IniREREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEN2fR/00qVLsXPnTgBASEgI5s6di/j4eBw8eBCtW7cGAMTGxmL48OHIzc3FokWLYDQaMWLECMyaNavxqiciInJQtQZ0bm4uvvvuO2zZsgUKhQIvvvgivvzySxw5cgTr1q2DRqOx7VtZWYmEhASsXbsWnTp1wtSpU5GTk4OQkJBGbYKIiMjR1HqJW61WY968eXB2doZKpUK3bt1QWFiIwsJCJCQkQKvVIj09HVarFYcPH4a3tze8vLygVCqh1WqRnZ3dFH0QERE5lFrPoHv06GH7d0FBAXbu3In169fjwIEDSEpKgoeHB6ZOnYrMzEy4ublBrVbb9tdoNNDpdI1TORERkQOz6zloADhx4gSmTp2KuXPnomvXrli2bJltW0xMDLZu3YqwsDAoFArbeiFEtWV7tG/vXqf9a6JWe0CUlMPD3VWS8aSiUiklq0mqcdzcXKD2dJNkLKmp1R7NXUKjcvT+APboCBy9P0CePdoV0AcPHsSMGTOQkJCAiIgIHDt2DAUFBQgLCwNwPYiVSiU6duwIvV5vu51er6/2HLU9iosNsFpFnW5zK7XaA3p9KcqNZpQaKhs0ltRMJmlq8nB3lay3isoqFJw3SjKWVFxUSnTqcH0eHdWN49SRsceWz9H7A5q3RycnRY0nprUG9MWLFzF9+nSkpaUhKCgIwPVAXrhwIQIDA+Hm5oYNGzZgzJgx8Pf3x+nTp3HmzBl06dIF27dvx1NPPSVtNyQ5o8mCvOP62ndsQv16dWjuEoiImlWtAf3RRx/BaDQiJSXFti46OhpTpkzB+PHjYTabERoaisjISABASkoK4uLiYDQaERISgvDw8MarnoiIyEHVGtCJiYlITEy847aJEyfeti4oKAhZWVkNr4yIiOguxk8SIyIikiEGNBERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhhjQREREMsSAJiIikiEGNBERkQwxoImIiGSIAU1ERCRDDGgiIiIZYkATERHJEAOaiIhIhhjQREREMmRXQC9duhQRERGIiIjA4sWLAQC5ubnQarUIDQ1FWlqabd/8/HxERUUhLCwMr7/+Osxmc+NUTkRE5MBqDejc3Fx899132LJlC7Zu3Ypff/0V27dvR0JCApYvX44dO3bgyJEjyMnJAQDMmTMHb7zxBnbt2gUhBDIyMhq9CSIiIkdTa0Cr1WrMmzcPzs7OUKlU6NatGwoKCuDt7Q0vLy8olUpotVpkZ2fjwoULqKysREBAAAAgKioK2dnZjd4EERGRo6k1oHv06GEL3IKCAuzcuRMKhQJqtdq2j0ajgU6nQ1FRUbX1arUaOp2uEcomIiJybEp7dzxx4gSmTp2KuXPnolWrVigoKLBtE0JAoVDAarVCoVDctr4u2rd3r9P+NVGrPSBKyuHh7irJeFJRqZSS1STVOFLWJBU3NxcA1+fRkTl6fwB7dASO3h8gzx7tCuiDBw9ixowZSEhIQEREBA4cOAC9Xm/brtfrodFo0LFjx2rrL126BI1GU6eCiosNsFpFnW5zK7XaA3p9KcqNZpQaKhs0ltRMJmlq8nB3law3qWqSUnm5EfB0g15f2tylNJobx6kjY48tn6P3BzRvj05OihpPTGu9xH3x4kVMnz4dqampiIiIAAD4+/vj9OnTOHPmDCwWC7Zv347g4GB07twZLi4uOHjwIABg27ZtCA4OlrAVIiKiu0OtZ9AfffQRjEYjUlJSbOuio6ORkpKCuLg4GI1GhISEIDw8HACQmpqKxMREGAwG+Pr6YtKkSY1XPRERkYOqNaATExORmJh4x21ZWVm3revZsycyMzMbXhkREdFdjJ8kRkREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEN2f5sVERFJx2wFjCZzc5dRjYtKCaWMTtua6j4SJeUoN9r3c5ryPmJAExE1A6PJjB/zdc1dRjX9enWA0kU+sdBU91Fdvh2wKe8jGf2tRERERDcwoImIiGSIAU1ERCRDDGgiIiIZYkATERHJkN0BbTAYEBkZifPnzwMA4uPjERoailGjRmHUqFH48ssvAQC5ubnQarUIDQ1FWlpa41RNRETk4Ox6rXheXh4SExNRUFBgW3fkyBGsW7cOGo3Gtq6yshIJCQlYu3YtOnXqhKlTpyInJwchISGSF05E8nTze1fr8v7SxiS39/cS2cOugM7IyEBSUhLmzp0LAKioqEBhYSESEhKg0+kwfPhwxMbG4vDhw/D29oaXlxcAQKvVIjs7mwFNdBe5+b2rdXl/aWOS2/t7iexh1xG7YMGCasuXLl1CYGAgkpKS4OHhgalTpyIzMxNubm5Qq9W2/TQaDXS6ur3JvH179zrtXxO12gOipBwe7q6SjCcVlUopWU1SjSNlTVJxc3MBcH0eHZkj9nfr404Ox5abmwvUnm6NNn595lGOv59qup+a6zhtyvvI3p/T2MfSzer1J6WXlxeWLVtmW46JicHWrVsRFhYGhUJhWy+EqLZsj+JiA6xWUZ+ybNRqD+j1pSg3mmXx1/vNTCZpapLyzESqmqRUXm4EPN2g15c2dymN5sZx6mhuftzJ5Qy6vNwIvcXSKGPXdx7l+PvpTvdTcx6nTXUf1eU4lfpYcnJS1HhiWq9nZY4dO4Zdu3bZloUQUCqV6NixI/R6vW29Xq+v9hw1ERER2adeZ9BCCCxcuBCBgYFwc3PDhg0bMGbMGPj7++P06dM4c+YMunTpgu3bt+Opp56SumYiojpROClQ1kgvVqvvC+EaeKGwUdzpfmrOF/rJ8T5qSvUK6J49e2LKlCkYP348zGYzQkNDERkZCQBISUlBXFwcjEYjQkJCEB4eLmnBRER1ZTRZkHdcX/uO9VDfy/j+Purad2pid7qfmvNpCjneR02pTgH973//2/bviRMnYuLEibftExQUhKysrIZXRkREdBfjOwOJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyVC9vs2KqLEpnBQoasavubsTF5USSv5JS0RNhAFNsmQ0WZB/pqjZvubuTvr16gClCx8yRNQ0eD5AREQkQ3YHtMFgQGRkJM6fPw8AyM3NhVarRWhoKNLS0mz75efnIyoqCmFhYXj99ddhNsvnEiUREVFLYVdA5+XlYfz48SgoKAAAVFZWIiEhAcuXL8eOHTtw5MgR5OTkAADmzJmDN954A7t27YIQAhkZGY1WPBERkaOyK6AzMjKQlJQEjUYDADh8+DC8vb3h5eUFpVIJrVaL7OxsXLhwAZWVlQgICAAAREVFITs7u/GqJyIiclB2veJlwYIF1ZaLioqgVqttyxqNBjqd7rb1arUaOp1OolKJiIjuHvV6SarVaoVCobAtCyGgUChqXF8X7du716ek26jVHhAl5fBwd5VkPKmoVErJapJqHClrkopKdf3QlFNdbm4uUHu6STqmWu0h6XhycOvjTg5z2NjHeH3Gluvj7k41NVedTXkf2ftzGuP3QE3qFdAdO3aEXq+3Lev1emg0mtvWX7p0yXZZ3F7FxQZYraI+Zdmo1R7Q60tRbjTL6m06AGAySVOTh7urZL1JVZOUTKbrLy6UU13l5UboLRbJxrtxnDqamx93Uh6nDdGYx3h9e5Tr4+7WmppzDpvqPqpLj1L/HnByUtR4Ylqvt1n5+/vj9OnTOHPmDCwWC7Zv347g4GB07twZLi4uOHjwIABg27ZtCA4Orn/lREREd6l6nUG7uLggJSUFcXFxMBqNCAkJQXh4OAAgNTUViYmJMBgM8PX1xaRJkyQtmIiI6G5Qp4D+97//bft3UFAQsrKybtunZ8+eyMzMbHhlREREdzF+khgREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhBjQREZEMMaCJiIhkiAFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ERERDLEgCYiIpIhZUNuHBMTg5KSEiiV14eZP38+zp49ixUrVsBsNuPZZ5/FxIkTJSmUiIjoblLvgBZCoKCgAF999ZUtoHU6HWbNmoXNmzfD2dkZ0dHRGDBgALp37y5ZwURERHeDegf0qVOnAACTJ0/GlStXMG7cOLRp0waBgYFo164dACAsLAzZ2dmIjY2VploiIqK7RL2fg7527RqCgoKwbNkyfPLJJ/j8889RWFgItVpt20ej0UCn00lSKBER0d2k3mfQjz76KB599FHb8tixY7Fo0SJMmzbNtk4IAYVCUadx27d3r29J1ajVHhAl5fBwd5VkPKmoVErJapJqHClrkopKdf3QlFNdbm4uUHu6STqmWu0h6XhycOvjTg5z2NjHeH3Gluvj7k41NVedTXkf2ftzGuP3QE3qHdA//fQTTCYTgoKCAFwP4z6SrzwAABBnSURBVM6dO0Ov19v20ev10Gg0dRq3uNgAq1XUtywA13/p6fWlKDeaUWqobNBYUjOZpKnJw91Vst6kqklKJpMZAGRVV3m5EXqLRbLxbhynjubmx52Ux2lDNOYxXt8e5fq4u7Wm5pzDprqP6tKj1L8HnJwUNZ6Y1vsSd2lpKRYvXgyj0QiDwYAtW7bgnXfewb59+1BSUoKKigrs3r0bwcHB9S6ciIjoblXvM+ghQ4YgLy8Po0ePhtVqxYQJE9CnTx/MmjULkyZNgslkwtixY/HII49IWS8REdFdoUHvg3711Vfx6quvVlun1Wqh1WobVBQREdHdjp8kRkREJEMMaCIiIhliQBMREckQA5qIiEiGGNBEREQyxIAmIiKSIQY0ERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREclQgz6Lm4ial9kKGP//qznlooHfFktE/48BTdSCGU1m/Jiva+4yqvH3UTd3CUQOgQFNZCeFkwJlRunOVkVJOcobOB7PVokcFwOayE5GkwV5x/WSjefh7opSQ2WDxuDZKpHj4ovEiIiIZKhRAvqLL77AyJEjERoaivXr1zfGjyAiInJokl/i1ul0SEtLw+bNm+Hs7Izo6GgMGDAA3bt3l/pHEREROSzJAzo3NxeBgYFo164dACAsLAzZ2dmIjY216/ZOTgpJ6nByUkDZygluripJxpOKVDW1dlHCYpamN7neT1L2KAWp7ycp+pPr3N2oSS5z2Jj3U317lPvc3dCcc9hU91FdelS2cpIsp4A/zzzJA7qoqAhq9X9euKLRaHD48GG7b3/vvW0kqaN9e3cAQJdO90gynpS6drm3uUu4DWuyD2uyD2uyD2uqndzqaUqSPwdttVqhUPznLwIhRLVlIiIiqp3kAd2xY0fo9f95K4per4dGo5H6xxARETk0yQP68ccfx759+1BSUoKKigrs3r0bwcHBUv8YIiIihyb5c9AdOnTArFmzMGnSJJhMJowdOxaPPPKI1D+GiIjIoSmEEPywQCIiIpnhJ4kRERHJEAOaiIhIhhjQREREMsSAJiIikiGH+7rJL774AitWrIDZbMazzz6LiRMnNndJDbZ06VLs3LkTABASEoK5c+ciPj4eBw8eROvWrQEAsbGxGD58eHOW2SAxMTEoKSmBUnn9kJw/fz7Onj3rMHO5ceNGrFu3zrZ8/vx5jBo1ChUVFS1+Hg0GA6Kjo7Fy5Up06dIFubm5WLRoEYxGI0aMGIFZs2YBAPLz8/H666+jrKwMffv2RXJysm2+5e7WHjds2IC1a9dCoVDAz88PycnJcHZ2xtKlS7Fp0ya0bdsWADBu3LgWcdze2l9Nv19qmtuW4OYeT548iSVLlti26XQ6+Pv7Y9WqVfKaQ+FA/vjjDzFkyBBx+fJlUVZWJrRarThx4kRzl9Ug33//vfjrX/8qjEajqKqqEpMmTRK7d+8WkZGRQqfTNXd5krBarWLgwIHCZDLZ1jniXN5w/PhxMXz4cFFcXNzi5/GXX34RkZGRwtfXV5w7d05UVFSIkJAQcfbsWWEymcTkyZPF119/LYQQIiIiQhw6dEgIIUR8fLxYv359c5Zut1t7PHXqlBg+fLgoLS0VVqtVzJ07V6xZs0YIIcTUqVPFzz//3LwF19Gt/Qkh7nhc/tncyt2deryhqKhIDBs2TJw+fVoIIa85dKhL3Dd/UYebm5vtizpaMrVajXnz5sHZ2RkqlQrdunVDYWEhCgsLkZCQAK1Wi/T0dFit1uYutd5OnToFAJg8eTKefPJJrFu3ziHn8oZ//OMfmDVrFlq3bt3i5zEjIwNJSUm2Tws8fPgwvL294eXlBaVSCa1Wi+zsbFy4cAGVlZUICAgAAERFRbWY+by1R2dnZyQlJcHd3R0KhQI+Pj4oLCwEABw5cgSrVq2CVqvF/PnzYTQam7N0u9zaX0VFxR2Py5rmtiW4tcebLV68GNHR0XjwwQcByGsOHSqg7/RFHTqdrhkrargePXrYfqkVFBRg586dGDRoEAIDA7Fw4UJkZGTgp59+QmZmZjNXWn/Xrl1DUFAQli1bhk8++QSff/45CgsLHW4uget/RFZWVmLEiBG4dOlSi5/HBQsWoG/fvrblmh6Dt65Xq9UtZj5v7bFz58544oknAAAlJSVYv349hg0bhrKyMvTq1Qtz5szBli1bcO3aNSxfvry5yrbbrf3VdFy25N+vt/Z4Q0FBAQ4cOIBJkyYBgOzm0KEC2pG/qOPEiROYPHky5s6di65du2LZsmXQaDRo3bo1YmJikJOT09wl1tujjz6KxYsXw8PDA56enhg7dizS09Mdci4///xzPP/88wAALy8vh5pHoObHoCM+NnU6HZ599lk89dRTGDBgANq0aYN//vOf6NatG5RKJSZPntwi57Om49IR53DDhg2YMGECnJ2dAUB2c+hQAe2oX9Rx8OBBPPfcc/jb3/6GMWPG4NixY9i1a5dtuxCixbzY5k5++ukn7Nu3z7YshEDnzp0dbi6rqqrw448/YujQoQDgcPMI1PwYvHX9pUuXWvR8njx5EtHR0RgzZgymT58OACgsLKx2BaSlzmdNx6Uj/n7du3cvRo4caVuW2xw6VEA74hd1XLx4EdOnT0dqaioiIiIAXD9oFi5ciKtXr8JkMmHDhg0t7pW/NystLcXixYthNBphMBiwZcsWvPPOOw43l8eOHcODDz4INzc3AI43jwDg7++P06dP48yZM7BYLNi+fTuCg4PRuXNnuLi44ODBgwCAbdu2tdj5NBgMeOGFFzBz5kxMnjzZtt7V1RXvvPMOzp07ByEE1q9f3yLns6bjsqa5balKSkpQWVkJLy8v2zq5zWHL+/PuTzjiF3V89NFHMBqNSElJsa2Ljo7GlClTMH78eJjNZoSGhiIyMrIZq2yYIUOGIC8vD6NHj4bVasWECRPQp08fh5vLc+fOoWPHjrblnj17OtQ8AoCLiwtSUlIQFxcHo9GIkJAQhIeHAwBSU1ORmJgIg8EAX19f2/N+LU1mZiYuXbqENWvWYM2aNQCAoUOHYubMmZg/fz6mTZsGk8mExx57zPZ0RkvyZ8dlTXPbEp0/f77a4xEAPD09ZTWH/LIMIiIiGXKoS9xERESOggFNREQkQwxoIiIiGWJAExERyRADmoiISIYY0ETNJC0tDTExMc1dRo3y8/MxbNgw+Pv7Iycn57blxrZx40bbh7oQ3Y0c6n3QRCSdDz74AA8++CA+/fRT3HfffXjttdeqLRNR42JAE9EdlZaW4rHHHkOXLl3uuExEjYuXuImayO+//47x48fD398fzz//PK5cuWLbtmnTJowYMQJ+fn4YMGAAkpKSYDabodPp0KtXLxw+fNi2r8FgQO/evfHrr7/i4sWLePHFF/HYY4+hf//+iI+PR1lZmV31GI1GpKamIiQkBAEBAXj55Zdx4cIFANc/GevAgQNYuXIlhg4detsyAPzxxx945ZVXEBAQgMGDByM1NRVVVVUAgM2bN2PcuHGYMWMG+vTpg40bN0IIgeXLl2PQoEHo06cPXnjhBRQUFNjq0el0ePHFFxEQEICoqCicP3++oXc5UYvGgCZqAlVVVZgyZQq6dOmCzZs34y9/+Qs2btwI4PqXhSQnJ2PWrFnYtWsXkpOTsXnzZuzevRsdOnRAv379sHPnTttYe/bswf333w9fX1/Mnz8fSqUSmzZtwscff4xDhw5h5cqVdtWUlJSE3bt34+2338aGDRtgNpsxbdo0WCwWZGZm4tFHH8Wzzz6LzMzM25aFEJg+fTruuecebNq0Campqfj666+xZMkS2/h5eXnw9vbGxo0bMWTIEKxbtw7btm3D4sWLkZGRAW9vbzz33HOoqKgAAMycORNWqxUbN27Eiy++iM8++0zCGSBqgQQRNbqvvvpKBAQECIPBYFsXFxcnnnnmGfG///u/Iisrq9r+48aNE++//74QQoiMjAwxZMgQ27aXXnpJpKenCyGE0Gq1Yvbs2cJoNAohhDhx4oT4/fffa63nypUromfPnuLrr7+2rbt8+bLw9/cXX331lRBCiGeeeUYsWbLEtv3m5dzcXNG/f39hNptt2/fv3y98fX2FyWQSmzZtEj4+PqK0tNS2PTg4WOzevdu2bLVaxdChQ8WWLVvE8ePHhY+Pjzh37pxte0pKSrW+ie42fA6aqAn8/vvv8PLyQps2bWzr/Pz88O2338LPzw+urq5IT0/H77//jmPHjuHMmTMIDAwEAISFhSE5ORl5eXl48MEHkZubi7///e8AgBkzZmDWrFnYu3cvBg4ciNDQ0Gpfn1eTgoICWK1W+Pv729a1a9cODz30EE6ePInBgwf/6e1PnjyJa9euoW/fvrZ1QgiYTCYUFhbaxnN3dwcAlJWV4Y8//sDs2bPh5PSfC3dGoxEFBQVwcXGBu7t7tee3/fz8qn3tIdHdhgFN1ETELd9Lc+N7Zr/99lu88sorGD16NAYNGoTp06cjOTnZtl/btm0RHByM7OxsdO/eHT169EC3bt0AAH/5y1+Qk5ODPXv24JtvvkF8fDy+++67at9+dicuLi53XG+xWGCxWGrtxWw2w9vbG6tWrbpt241vCLr5Z9wYc8mSJejevXu1/T08PLB///4a7x+iuxWfgyZqAj169MDZs2dx9epV27rffvsNwPX3+44ZMwZvvvkmnn76aXTr1g1nz56tdvvIyEh89dVXyMnJsX0vOHD9vdR//PEHxo0bh6VLl+Ktt97Cjh07aq3ngQcegFKpRF5enm3d5cuXcebMGXTt2rXW2z/00EP4448/0K5dO3h7e8Pb2xt6vR7vvvvubUELXP8jo3379tDr9bb9u3TpgiVLluDYsWPw8fFBWVkZTp06ddv9Q3S3YkATNYHHH38c999/PxISEvD7778jMzPTdvm2Xbt2OHToEI4ePYoTJ05g3rx50Ov1tldEA9dfVa3T6ZCTk1PtEvapU6cwf/58/Pbbbzh16hR2794NX1/fWutxc3NDdHQ0FixYgB9++AHHjh3D3Llz0aFDBwwaNKjW2w8cOBBeXl6YPXs2jh49ikOHDiExMRFOTk41np0/99xzeP/997Fnzx6cOXMGycnJyM3NRdeuXdGtWzcEBgYiISEBR48exZ49e/A///M/tdZB5MgY0ERNQKVS4cMPP4TBYEBUVBQyMjIwYcIEAEBsbCw0Gg2io6Px/PPPQ6VSYeLEidXOIF1dXTF06FD4+vri/vvvt63/xz/+gQ4dOuC5555DVFQULBYL3n33XbtqmjNnDgYOHIiZM2ciOjoazs7O+PTTT2sM2Ju1atUKy5cvR6tWrRAdHY2XX34Zffv2xVtvvVXjbV544QVER0cjOTkZTz75JI4fP46PPvoIHTp0AAC89957uO+++xAdHS37T1kjagoKcafrUUQkO5MmTUJ4eLgt2InIsfFVGEQyt3//fuTl5eHXX3/F0qVLm7scImoiDGgimfviiy+wa9cuJCUloW3btnbdZvr06cjNza1x++zZszFx4kSpSiSiRsBL3EQOqKioyPYJXXfi6ekJDw+PJqyIiOqKAU1ERCRDfBU3ERGRDDGgiYiIZIgBTUREJEMMaCIiIhliQBMREcnQ/wGhKGlOu0toJgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["plt.figure(figsize = (8,4))\n","b = sns.distplot(data['days_offered'],kde = False)\n","b.set_title('days_offered',fontsize = 16)\n","b.set_xlabel(\"days_offered\",fontsize=14)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"gK-iLapB_p1u"},"source":["__Insight: Candidates were offered job as less as 1 day to maximum 180 days__"]},{"cell_type":"markdown","metadata":{"id":"P7X7uPPg_p1u"},"source":["#### Days Offered - Metric approach"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yH5f9xQ__p1v","outputId":"5bfd06a9-9c31-4561-81b7-979ff5dcd1ff"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.29164582291145574\n"]}],"source":["days_offered_gt_120 = len(data[data['days_offered'] > 120])/len(data['days_offered'])\n","print(days_offered_gt_120)"]},{"cell_type":"markdown","metadata":{"id":"bsnvY_HG_p1w"},"source":["__Insight: Approx 30% of candidates were offered job after 120 days__"]},{"cell_type":"markdown","metadata":{"id":"t6_JkJHK_p1w"},"source":[" Activity for practice "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PLPP0fhY_p1x","outputId":"a14b880e-8b3c-49eb-c25d-4a62bcb32980"},"outputs":[{"data":{"text/plain":["Index(['age', 'career_growth', 'days_offered', 'distance_from_home',\n"," 'education_level', 'flexi_work', 'gender', 'jhi', 'marital_status',\n"," 'offer_dropped', 'percent_hike', 'sourcing_channel',\n"," 'timely_communication', 'total_rounds'],\n"," dtype='object')"]},"execution_count":51,"metadata":{},"output_type":"execute_result"}],"source":["\n","## Analyse the distribution and patterns for the remaining variables\n","data.columns"]},{"cell_type":"markdown","metadata":{"id":"a487S4ei_p1x"},"source":["### Bivariate Analysis\n","\n","Bivariate Analysis is done between two variables. Nature of variables can be Categorical or Numerical;\n","Different charts and statistics are used to understand the relationship between two variables such as:\n","1. Numerical vs Numerical Variable\n"," Visualisations : Correlation Plot, Scatter Plot, Line Chart, regression chart\n"," Statistical Approach: correlation or covariance values, ANOVA method, Regression Analysis\n","2. Categorical vs Categorical Variable\n"," Visualisations : Bar Plot, Stacked Bar Chart, Grouped Bar Chart, Advanced Charts\n"," Statistical Approach : Prop Table Analysis, Chi-Square Test of Independence\n","3. Numerical vs Categorical Variable:\n"," Visualisations : Box Plot with Categorical variable on x-axis, Advanced Charts\n"," Statistical Approach : Two Sample T-Test\n"," \n","Bivariate Analysis can be done between any two independent variables;\n","However, analysis of independent variable w.r.t dependent variable (target) is very important\n"," "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"03SJKfID_p1y","outputId":"265a45cd-a2ad-436e-b3e9-a9d808835d8c"},"outputs":[{"data":{"text/plain":["age float64\n","career_growth category\n","days_offered int64\n","distance_from_home category\n","flexi_work category\n","jhi float64\n","offer_dropped category\n","percent_hike float64\n","sourcing_channel category\n","timely_communication category\n","total_rounds float64\n","dtype: object"]},"execution_count":129,"metadata":{},"output_type":"execute_result"}],"source":["data.dtypes"]},{"cell_type":"markdown","metadata":{"id":"bmeL-KZh_p1z"},"source":["#### Numeric to Numeric Variables Relationship Analysis\n","\n","Let us examine if any 2 pieces of data for an employee have a relation. There are 17 attributes how to know if there is a relation between 2 variables. The best way to know about this is by calculating the correlation between all the pairs of numerical data. \n","This is called __CORRELATION ANALYSIS__\n","
\n","The best way to do the correlation analysis is by plotting them."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PJHPeqxE_p1z","outputId":"ca93ff35-8290-4515-d048-99633722ada4"},"outputs":[{"data":{"text/plain":[""]},"execution_count":53,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZ0AAAGECAYAAADtBv3xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXxMZ9vA8d8kkU0SIbIQai1FhVpCUbHnsT+xlFJLH6WqEVK0liAtQS0VW7WWKmpv7VWCoAvSUmpvqyIkZJNESEKWmfePvB3SDElMnJnD9e1nPnWfc50z15jINfdyzmh0Op0OIYQQQgEWpk5ACCHE80OKjhBCCMVI0RFCCKEYKTpCCCEUI0VHCCGEYqToCCGEUIwUHSGEEI909+5dunTpQnR0dL59Fy9epEePHvj6+jJp0iSys7MLPJ8UHSGEEAb9/vvvvPHGG1y9etXg/nHjxjFlyhT27duHTqdj8+bNBZ5Tio4QQgiDNm/ezNSpU3Fzc8u3LyYmhnv37lG/fn0AevTowd69ews8p1WxZymEEMJspaamkpqamm+7k5MTTk5OebaFhIQ88jzx8fG4urrq266ursTFxRX4/FJ0hBBCRbISrxh1/OoN37F48eJ82/39/Rk5cmShz6PVatFoNPq2TqfL034UKTpCCKEm2hyjDh80aBB+fn75tv+7l1MQDw8PEhIS9O3ExESDw3D/JkVHCCGeI4aG0Z6Ep6cnNjY2nDx5koYNG7Jjxw5atmxZ4HGykEAIIdREpzXuYaShQ4dy9uxZAObOncvMmTP5z3/+Q3p6OgMHDizweI18tYEQQqhH1s2LRh1folytYsrkycjwmhBCqIiuGHorpiRFRwgh1ESr7qIjczpCCCEUIz0dIYRQExleE0IIoRgjr9MxNSk6QgihJirv6cicjhBCCMVIT0cIIdRE5avXpOgIIYSKyHU6QgghlCM9HSGEEIpReU9HFhIIIYRQjPR0hBBCTeQ6HSGEEIpR+fCaFB0hhFATWUgghBBCMSrv6chCAiGEEIqRno4QQqiJDK8JIYRQik4nq9eEEEIoReZ0hBBCiMKRno4QQqiJzOkIIYRQjMqH16ToCCGEmshtcJ5vWYlXTJ3CU+FexdfUKRS76KAWpk7hqag687ipUyh2jiXsTZ3CU/FXwknjT6Lyno4sJBBCCKEY6ekIIYSayEICIYQQilH58JoUHSGEUBPp6QghhFCMyouOLCQQQgihGOnpCCGEisgNP4UQQihH5cNrUnSEEEJNVL56TeZ0hBBCKEZ6OkIIoSYyvCaEEEIxKh9ek6IjhBBqIj0dIYQQilF5T0cWEgghhFCM9HSEEEJNZHhNCCGEYqToCCGEUIzK53Sk6AghhJqovKcjCwmEEEIoRno6QgihJjK8JoqbTqdj0vR5vFitMm/165Vv/5GjvxD6+SqyMrOoUb0KH08YjUPJkibItGja+7ZiSvAYrG2suXDuDwLem8idO3efOM4cWFT1wtqnF1haoU2IJvP7LyHznn6/ZZ1mlGjs++AAGzs0jqXJ+GwMpKeaIOOCtevgw8SpgVhbW3Px/B8Ejgzi7p20IseYm1btWzBmkj/WNiX448JlJo76mLt304ocY3IyvCaK099XrzEkYAL7D/9kcH9ScgqTQz4lNCSI3RtXUKG8B/OXrlI4y6JzKVuGxUtnMehNf5o08OXq1etM+WjsE8eZBTtHbDoN4f72JdxbMRFdSgIlfHrnCck5f5R7X03Nfaz5GF3abbL2rzPbguPiUprQJSEMGTCKFo07EXU1mqCpY4ocY27KuDgza8FU/P83Dt9Xe3L9ajRjJ48scoxZ0GmNe5iYFB0zs/Hb3fTs6kuH1q8Z3H/0l9+oU6sGlSp6AtDHrwvfhR1Cp9MpmWaRtW7TglO/neXK31EAfLliPb1f7/bEcebAskodtLGR6JLjAMg+FY5VnaaPjLdq0gld+h2yfz+sUIZF59OmOad/O0fkldy//9VfbqBH7y5FjjE3LVq9ytnTF4i6ch2A9V99Q7deHYscI4z3TA6vZWdnExwczF9//UViYiI1a9bk008/ZfPmzXz99dc4OjpStWpVXnjhBUaOHMkPP/zAwoULyc7OpkKFCkybNo3SpUubJPdJY0YAucXFkNj4RDzcXPVtd9ey3E1LJy093ayH2DwreBATfVPfvhETi1MpRxwdHfIMnRU2zhxoHMugTU3St3V3ktHY2IO1bZ4hNgDsHCjh7cu9rz5SOMuiKe/pQUzMw3//cTiVcsTBsaR++KwwMebGw9OdmzGx+nbsjXgcnRxwcCipHz4rTIxZkOE183Pq1ClKlCjBpk2b2L9/P3fu3GHFihWsW7eOrVu3sn79eqKicj+lJSUlMW/ePFauXMn27dtp0aIFc+fONfEreDStVotGk3+7hYWl8skUgYWFhcHeWE5OzhPFmQWNBjDQwzQwhGFVz4ecv06hu53w9PMygoWFhcGXpM3RFinG3FhYaDA0GJCjzSlSjFnQao17mNgz2dNp3Lgxzs7OrFu3jitXrnD16lWaNGlC69atcXBwAKBz586kpqby+++/c/PmTQYOHAjk/lIvVaqUKdN/rHIebpy98Ie+HZ+YiJOjA/Z2tibMyrAJk0bxn05tAXB0dODCQ3mXK+9OclIK6ekZeY6Jvn6Dho3qFRhnDnSpSViUr6ZvaxxLo8u4C1mZ+WKtanmTeWC9kuk9kZjomzRo5KVvlyvvTnJy3r//wsSYmxvRsdRr8LK+7V7OlZTk22Sk3ytSjFkw86H0gjyTPZ2DBw8yduxYbG1t6dGjB40bN8bR0RGtgSqfk5NDgwYN2LFjBzt27OCbb75h4cKFJsi6cJp5N+D385eIuh4DwKZte2jz2qsmzsqwmSEL8GneDZ/m3ejQpheNGtenarVKALw15A2+33Mw3zGHDv5UqDhzkHP1HJblq6Ip7Q6AVf3W5Fw+lT/Qxh6NszvamMsKZ1h0R8J/pmGjelSpmvv3P/CtPuzbE17kGHPz0+Hj1G9Yl0pVKwLwxuBeHNx7pMgxZkHlPZ1nsugcO3aMjh070rNnT5ycnIiIiADgyJEj3L17l8zMTMLCwtBoNNSrV4/Tp08TGRkJwGeffcbs2bNNmX4+5y7+Sc9B7wHgUtqZ6RMDCQwKoWu/Yfx15SrjRg41cYYFS0xMwv/d8Xy1dhHHT+yldp2aBE2cCUD9V17myM87C4wzO+l3uL/nS2z+OwLbt0OwcPUkM3wTFh6VsR38YO7GorQ7urQUMLdhGgMSE5MY/d4kVqwJ5YeI3dSqXYPgSbOpV78OB37c+tgYc5aUmMz4UR+xaOVs9v78DTVrVWfmlPm8XK8WOw+tf2zM82zXrl106tSJDh06sG7dunz7z58/T8+ePenWrRvvvPMOqakFr8rU6Mx92dMT+OOPPxg7NneZbYkSJfD09KRq1aq4ubmxfv167O3tKV26NI0bN2bo0KGEh4ezYMECtFot7u7uzJkzp9ALCbISrzzNl2Iy7lV8Cw5SmeigFqZO4amoOvO4qVModo4l7E2dwlPxV8JJo8+RsW6yUcfb9Z9WqLi4uDjeeOMNtm7dirW1NX379uXTTz+levXq+ph+/frxzjvv4OPjw6xZs7CxsSEwMPCx530m53Rq1qzJrl278myLjIzkyJEjfPfddwC8++67VKuWOx7fpk0b2rRpo3ieQghRZEZea5OammqwR+Lk5ISTk5O+ffToUZo2bYqzszMAvr6+7N27F39/f32MVqslLS13ZV9GRkah5sOfyaJjiKenJ2fPnqVLly5oNBpatGhB69atTZ2WEEIUjZHzMqtXr2bx4sX5tvv7+zNy5IOLYePj43F1fXB5hpubG2fOnMlzzPjx4/nf//7HjBkzsLOzY/PmzQU+/3NTdKytrZk3b56p0xBCCOMYOSMyaNAg/Pz88m1/uJcD/1ye8eD6DJ1Ol6d97949Jk2axFdffYWXlxerVq3iww8/ZNmyZY99/uem6AghhMg/jPYoHh4enDhxQt9OSEjAzc1N3/7zzz+xsbHByyt3+XyfPn1YsGBBged9JlevCSHEM0uhJdPNmjXj2LFjJCUlkZGRQVhYGC1bttTvr1SpErGxsVy5kruY6uDBg9StW7fA80pPRwgh1ESha23c3d0JDAxk4MCBZGVl0atXL7y8vBg6dCgBAQHUrVuXmTNnMnr0aHQ6HS4uLsyYMaPA80rREUIINVHwTtFdu3ala9euebYtX75c/2cfHx98fHyKdE4ZXhNCCKEY6ekIIYSK6LTqvp5fio4QQqiJGdw/zRhSdIQQQk3M4Ns/jSFFRwgh1ETlw2uykEAIIYRipKcjhBBqInM6QgghFCNFRwghhGJU/hVoUnSEEEJNVN7TkYUEQgghFCM9HSGEUBOVL5mWoiOEEGoiF4cKIYRQjMp7OjKnI4QQQjHS0zGSexVfU6fwVMRF7jN1CsXOrvxrpk7hqYhrX93UKRS7Iyc9TZ2C2dKpfPWaFB0hhFATlQ+vSdERQgg1kYUEQgghFKPyno4sJBBCCKEY6ekIIYSayEICIYQQilH58JoUHSGEUBOVLySQOR0hhBCKkZ6OEEKoiQyvCSGEUIrckUAIIYRypKcjhBBCMSovOrKQQAghhGKkpyOEEGqi8iXTUnSEEEJNVD68JkVHCCFURCdFRwghhGJUXnRkIYEQQgjFSE9HCCHURC4OFUIIoRiVD69J0RFCCDVRedGROR0hhBCKkaJjhtr7tuLHY7uI+G0fq9YsxNHRwag4c6HT6Zg4bS6r1n9jcP+Ro7/gN/BduvR9m/eDQriblqZwhkXXqWNbfju5n/PnfmDjhi8KfA++XBnK+4HvKJTdkynRuCmlFn+J8xdrcZjwERo7+3wxlpWq4jQzlFILV1Aq9Assq9cwQaZF49GuPm3DZ9H+p7l4Lx+FlYPdI2PL/acRXS+vVDC7wtPpdEY9TK3IRWf8+PFs3br1aeRSoCNHjvDaa68xZswYzp8/T6tWrejfv3+xP0/NmjWL/ZyF5VK2DIuXzmLQm/40aeDL1avXmfLR2CeOMxd/X73GkIAJ7D/8k8H9SckpTA75lNCQIHZvXEGF8h7MX7pK4SyLpmzZMqxY/imv9xlGnZdbEhkZxYyQiQZjX3qpOvv3baZnj84KZ1k0GqdSOIwez50Zk0l5ZwDa2BvYv/WvImljg9P0uWR8u4HbAW+TvnENjmODTJNwIVm7ONIg9B2ODwllf4uxpEXF8XJQX4OxJat4UHdqPzQajcJZFpJWZ9zDxFTV09m7dy/+/v7MmzePQ4cO0a1bN9atW2fqtIpV6zYtOPXbWa78HQXAlyvW0/v1bk8cZy42frubnl196dD6NYP7j/7yG3Vq1aBSRU8A+vh14buwQ2bxyexR2rf34cSJ37l8ORKAz79YQ783/AzGvjt8MCtXreebb3crmWKRlWjQmOy/LqG9EQPAve92YN2qXd6YVxqTczOGrBMRAGQd/5k7s4KVTrVI3H28SDl9hbTIWAAiVx+gYo/m+eIs7axpvGQEZ6d+rXSKhafyolPgQgKdTsesWbM4fPgwbm5u5OTk4O3tzfz58zl27Bi3b9/Gzc2N+fPnc+jQIY4fP868efMAWLRoETY2NtStW5c5c+YAUKpUKebNm0eZMmUe+ZyHDh0iNDQUrVZLxYoV+fjjjzl06BAHDx7k2LFj3L9/nw0bNgBgbW1N3759mTJlCrGxsWg0GsaMGUOzZs1YtGgRp0+f5ubNm7z55ps0b96c4OBgUlJSsLW1ZfLkydSuXZvo6GjGjRtHeno69erVK46/1yfmWcGDmOib+vaNmFicSjni6OjAnTt3ixxnLiaNGQHkFhdDYuMT8XBz1bfdXctyNy2dtPR0HEqWVCTHoqpYoTzXo2/o29HRNylVysngezBqdG5PoH07H0VzLCoLVze0CfH6tjYxAYuSDmjs7NFlpANg6VkRbXISJUd9gFWVamjT7pL+5eemSrlQ7MqXIT3mlr6dcSOJEk72WDnYkX03Q7/9ldlDiFx7kNsXr5kizUJ55u9IsG/fPi5cuMDu3bu5c+cO3bp1IycnhytXrrBx40YsLCz44IMP2LlzJ3369GH+/PncvXsXBwcHdu/ezZo1axg7dizBwcF4eXmxfPlyLly4QIsWLQw+361bt5gyZQobNmygQoUKrFixgo8//piFCxdy8uRJvL296dGjB7dv3wbA39+fwMBAevbsSdu2bYmPj6dfv35s374dgMzMTPbs2QOgL061a9fm8uXLvPfee+zbt49p06bRo0cPevfuzfbt29m0aVNx/f0WmYWFhcFP9zk5OU8UpxZarRZDoxkWFpbKJ1NIz9p7AKDRWICB32kPf3GYxsoS60ZNSZ04mrQ/LlKiaXOcPvqE5MF9IDtLwWwLT2NheFDn4ddVdXA7dDlaojYcwb5iWaVSe+4UWHR++eUXOnToQIkSJShTpgwtW7bE0tKSDz/8kC1bthAZGcnp06d54YUXKFmyJD4+Puzfv5+KFStSsWJF3N3dadu2Lf7+/rRr1462bdvSvHn+bu0/zpw5g5eXFxUqVACgT58+LFu27LE5Hj16lCtXrrBw4UIAsrOzuX79OgBeXl4ApKWlce7cOSZMmKA/Lj09neTkZH755Rd976xbt24EBSk7Pj1h0ij+06ktAI6ODly48Id+X7ny7iQnpZCenpHnmOjrN2jYqF6BcWpRzsONsw+97vjERJwcHbC3szVhVvkFTx1Lly4dAHBydODc+Uv6fZ6eHiQlJav2PQDISYjDqmYtfdvCpSzaO6lw/55+m/bWLXKio8j+4yKQO7xGwAdYlitPzvUoxXMujPSYREo3qKZv25YrQ2byXXLS7+u3vdDHB0s7a9ocmIGFtRWWtrl/Ptp/NvfiUkyRtmHPek9Ho9Hk+TRnZWVFSkoKQ4YMYfDgwfj6+ub5xNezZ0+WLl1KhQoV6NGjBwCDBw+mdevWHDp0iDlz5nDmzBneffddg8+n/dfVtjqdjuzs7MfmqNVqWb16Nc7OzgDEx8fj4uLCgQMHsLW11cdYW1uzY8cO/XGxsbH6Y/7JX6PRYPGIT0VPy8yQBcwMWQDkTk7/FPEdVatV4srfUbw15A2+33Mw3zGHDv7EtBkTCoxTi2beDZizaDlR12OoVNGTTdv20Oa1V02dVj7BH80l+KO5ALi6unD6t4NUr16Fy5cjeWfYAHbuCjNxhsbJ+u1XSg4ZgUV5T7Q3YrDt1I3M4z/nick8GYH92yOwrF6DnMt/YlXHC3Q6cmJvPuKsphd/5Cx1g9+kZBUP0iJjqTqwLTf3ncwTc7jjZP2f7SuWpd3h2YS3M7wwxKTUfUOCghcSvPrqq3z//fdkZmZy+/ZtfvzxRzQaDd7e3rzxxhtUrlyZw4cP64cUGjVqRGxsLBEREbRrlzsB2bt3b9LS0hg8eDCDBw/mwoULj3y+evXq8fvvvxMdHQ3Apk2baNKkyWNzbNq0KevXrwfg8uXLdO3alYyMvJ82HR0dqVy5sr7o/Pzzz/qVb82aNWPnzp0AhIWFcf/+fUwlMTEJ/3fH89XaRRw/sZfadWoSNHEmAPVfeZkjP+8sME4tzl38k56D3gPApbQz0ycGEhgUQtd+w/jrylXGjRxq4gwfLyHhFm8PfZ9NG5dx9sxhXq5Ti3EffAxAwwZenPhVfQVIdzuFu6GzcJzwMaU+X4Nl5aqkr1iCZfWalFq0IjcmOYk70yZRckQgpZasouQwf+6ETIasTBNn/2j3E1M5OfoLmqwYRbsf5uBUqyJngr/GuV4V2hyYYer0ikSn1Rn1MDWNrhDLg+bPn8/3339P2bJlsbe3p2HDhoSHh3PvXm6Xu1atWmi1WubOzf0EGBoaSkpKCsHBwQAcO3aMmTNnYmVlhb29PdOnT6dy5cqPfL7w8HAWLlxIVlYW5cuXJyQkBDc3N8aPH6+f01m0aBEAI0eOJC4ujilTpnDjRu6k7tixY/Hx8ckTA/D333/rFxKUKFFCP88UFxfHuHHjSElJ4eWXX2bv3r389pvhCe9/K+P4YqHi1CYucp+pUyh2duUNr5xTu7j21U2dQrE7ctLT1Ck8FT1i1xt9jpQ3Wht1vPOGQ0bnYIxCFZ3C0ul0ZGVl8dZbbzFx4kTq1KlTXKc2W1J01EOKjnpI0Xk0tRedYr33WkJCAp07d6Z3796PLTj37t2jT58+BvcFBATQtm3b4kxLCCGeHSqf0ynWouPm5savv/5aYJytrW2eCX0hhBCFYw7zMsaQu0wLIYSaqLyno6rb4AghhFA36ekIIYSKqH14TXo6QgihJlojH0Wwa9cuOnXqRIcOHQzeXPnKlSsMGDCAbt26MWTIEP3tyR5Hio4QQqiITmvco7Di4uKYP38+69ev19+T8vLlyw/y0Ol49913GTp0KDt37qRWrVoF3rIMZHhNCCHUxciFBKmpqaSmpubb7uTkhJOTk7599OhRmjZtqr9VmK+vr/7rZQDOnz+Pvb09LVu2BGD48OEGz/tvUnSEEOI5snr1ahYvXpxvu7+/v/7uLZB7D0tX1wdfN+Lm5saZM2f07WvXrlG2bFkmTpzIxYsXqVq1KpMnT6YgUnSEEEJFijJEZsigQYPw88v/ZYMP93Lgn68befB9IzqdLk87OzubX375ha+//pq6desSGhrKrFmzmDVr1mOfX4qOEEKoiZFF59/DaI/i4eHBiRMn9O2EhATc3Nz0bVdXVypVqkTdunUB6NKlCwEBAQWeVxYSCCGEiii1kKBZs2YcO3aMpKQkMjIyCAsL08/fALzyyiskJSVx6VLud0qFh4cX6n6b0tMRQggVMXZ4rbDc3d0JDAxk4MCBZGVl0atXL7y8vBg6dCgBAQHUrVuXJUuWEBQUREZGBh4eHsyePbvA8xbrXaafR3KXafWQu0yrh9xl+tHi2/oYdbzbwSNG52AM6ekIIYSKKNXTeVqk6AghhJroNAXHmDEpOkIIoSJq7+nI6jUhhBCKkZ6OEEKoiE4rw2tCCCEUovbhNSk6RooOamHqFJ6KZ3F5ccaNH02dwlNRo2b+W5qoXaY20dQpPBU9iuEcOllIIIQQQilq7+nIQgIhhBCKkZ6OEEKoiCwkEEIIoRi137hMio4QQqiI9HSEEEIoRu1FRxYSCCGEUIz0dIQQQkVkTkcIIYRi1D68JkVHCCFURO13JJA5HSGEEIqRno4QQqiI2m+DI0VHCCFURKvy4TUpOkIIoSJqn9ORoiOEECqi9tVrspBACCGEYqSnI4QQKiIXhwohhFCM2ofXpOgIIYSKyOo1IYQQilH76jVZSCCEEEIx0tMRQggVkYUEolhZVPXC2qcXWFqhTYgm8/svIfOefr9lnWaUaOz74AAbOzSOpcn4bAykp5og48Lr1LEt06ePx8bGhrNnLzJ02Bju3Ln7yPgvV4Zy7txFPp3/hYJZFo1Op2PS9Hm8WK0yb/XrlW//kaO/EPr5KrIys6hRvQofTxiNQ8mSJsi08Fq3f40PJgdgbWPNpfN/8uGoYO7eSStyjLlp26El46eMxsbamovn/2RMwOR8ORcmxtTUPqfz3A2vnT17lkmTJjFgwAAiIiLy7V+wYAEHDx40QWaAnSM2nYZwf/sS7q2YiC4lgRI+vfOE5Jw/yr2vpuY+1nyMLu02WfvXmX3BKVu2DCuWf8rrfYZR5+WWREZGMSNkosHYl16qzv59m+nZo7PCWRbN31evMSRgAvsP/2Rwf1JyCpNDPiU0JIjdG1dQobwH85euUjjLoinjUprZiz7m3cFjaNukO9eiYvhgyqgix5ibMi6l+XTxdIYNHE1L7y5ERUUzcer7RY4xBzqdxqiHqT13Radu3bqEhIQ8cv+oUaNo27atghk9YFmlDtrYSHTJcQBknwrHqk7TR8ZbNemELv0O2b8fVijDJ9e+vQ8nTvzO5cuRAHz+xRr6veFnMPbd4YNZuWo933y7W8kUi2zjt7vp2dWXDq1fM7j/6C+/UadWDSpV9ASgj18Xvgs7hM6Mx0dea/0qZ06d4+qVawB8/eVmuvfqVOQYc+PTphm/nzpH5P/nvGblRvx6dy5yjDDec1d0IiIiGDBgAADffPMNfn5+tG3blvDwcADGjx/P1q1bTZKbxrEM2tQkfVt3JxmNjT1Y2+YPtnOghLcvWQc3KJjhk6tYoTzXo2/o29HRNylVyglHR4d8saNGB7Fx43Yl03sik8aMoHOH1o/cHxufiIebq77t7lqWu2nppKWnK5HeEynn6cHNmDh9O/ZGHE5Ojjg4lixSjLkp71mOGzGx+vZNAzkXJsYc6HTGPUztuZ7TcXR0ZNu2bRw6dIjFixfTpk0b0yak0QAGfioM3Mvcqp4POX+dQnc74ennVQwsLCwMfsLPyckxQTbK0Gq1uW/pv1hYWCqfTCFZWGjQGfgZzMnRFinG3FhYaB7x86ctUow5kDkdFWvXrh0A1atXJzk52cTZgC41CY1DaX1b41gaXcZdyMrMF2tVy5vss4bnEsxF8NSxnPg1jBO/hvG/t96gfHl3/T5PTw+SkpJJT88wYYZPVzkPNxISH/Rc4xMTcXJ0wN7OQM/VTNyIjsXd40HvzKOcGynJt8l46H0qTIy5iYm+ibuHm77tUd6N5H/lXJgYcyBzOipmaZn7iVNj6OOoCeRcPYdl+apoSuf+craq35qcy6fyB9rYo3F2RxtzWeEMiyb4o7k0atyBRo070Py1rjTxbkD16lUAeGfYAHbuCjNxhk9XM+8G/H7+ElHXYwDYtG0PbV571cRZPd6Ph47xSkMvKld9AYB+b/Vm//eHixxjbo6EH6VBIy+q/H/OA97qQ9ie8CLHmAOtTmPUw9Se6+E1s5N+h/t7vsTmvyPA0gpdcjz3v1uBhUdlrP/zFve+mgqARWl3dGkpoFXP0FRCwi3eHvo+mzYuw9q6BFf+jmLw/3JXPDVs4MUXX+QWKLU7d/FPps5awLerl+BS2pnpEwMJDAohKyubip7lmDl5rKlTfKxbiUmMGzmFz1bNpYR1CaIioxkzYhJ169dmVuhUOrfq88gYc3YrMYn3/YNYtjqUEiWsiLp6nVHDJ+JVvw5zF35Mh5Y9HxkjipdGZ85LaZ6CiIgIFi9eDOs2ZkAAACAASURBVIC/vz9NmjQhOjqagQMHEh4ezvjx4/H29qZHjx6FOl/6J289zXRNxmnys9cLybjxo6lTeCpq1DS8ClDNMrXZpk7hqYhJPm/0OY6XL9zvpkdpesM0C6X+8dz1dO7cuYO9vT1ffPHggsMKFSroV6/NmjXLVKkJIUSBzGGIzBjP1ZzOnj17mDp1Kt26dTN1KkII8UTUvpDguerpdOrUiU6dzPsiNiGEeBzzWsBddM9VT0cIIYRpPVc9HSGEUDsdph8iM4YUHSGEUBGtytcbS9ERQggV0aq8pyNzOkIIIRQjPR0hhFARmdMRQgihGLUvmZaiI4QQKiI9HSGEEIpRe09HFhIIIYRQjPR0hBBCRaSnI4QQQjE6NEY9imLXrl106tSJDh06sG7dukfGHT58mDZt2hTqnNLTEUIIFdEqtI4gLi6O+fPns3XrVqytrenbty9NmjShevXqeeISExP55JNPCn1e6ekIIYTI5+jRozRt2hRnZ2fs7e3x9fVl7969+eKCgoLw9/cv9HmlpyOEECpi7G1wUlNTSU1NzbfdyckJJycnfTs+Ph5XV1d9283NjTNnzuQ5Zs2aNdSuXZt69eoV+vml6AghhIoYe7/P1atXs3jx4nzb/f39GTlypL6t1WrRaB4UOJ1Ol6f9559/EhYWxldffUVsbGyhn1+KjhBCqIixq9cGDRqEn59fvu0P93IAPDw8OHHihL6dkJCAm5ubvr13714SEhLo2bMnWVlZxMfH069fP9avX//Y55eiI4QQKqLVGDe89u9htEdp1qwZixYtIikpCTs7O8LCwpg2bZp+f0BAAAEBAQBER0czcODAAgsOyEICIYQQBri7uxMYGMjAgQP573//S5cuXfDy8mLo0KGcPXv2ic+r0el0Kv9KINPycK5l6hSeivPN3QoOUplGx1NMncJT8ecf20ydQrF7o+FoU6fwVHwTtdPoc2wp19+o43vffPT1NkqQ4TUhhFARtd+RQIqOEEKoiFIXhz4tUnSEEEJF5OuqhRBCiEKSno4QQqiI2ld+SdERQggVkTkdIYQQilH76jWZ0xFCCKEY6ekIIYSKyJyOEEIIxcicjhBCCMWofU5Hio4QQqiI2ouOLCQQQgihGOnpCCGEiuhkTkcIIYRS1D68JkVHCCFURIqOEEIIxaj9Oh1ZSCCEEEIx0tMRQggVkYtDhRBCKEbmdIQQQihG7UVH5nSEEEIoRno6ZqZdBx8mTg3E2tqai+f/IHBkEHfvpBU5xtyUaNwU+0HD0JQoQfbVK6SFfoIuIz1PjGWlqpQcHoCmpANoc7i7eB45l/80UcaF07r9a3wwOQBrG2sunf+TD0cF53svChNjbnQ6HZOmz+PFapV5q1+vfPuPHP2F0M9XkZWZRY3qVfh4wmgcSpY0QaaF16BNI/p/MBArayuuXYrisw8WknE3I0/Ma36t6D7MD51OR+a9+3w5dTl/n71soowNk9VrCjhz5gxz5sx5bExERAQDBgzItz0uLo6hQ4cCMH78eLZu3fpUciwOLi6lCV0SwpABo2jRuBNRV6MJmjqmyDHmRuNUCofR47kzYzIp7wxAG3sD+7feyRtkY4PT9LlkfLuB2wFvk75xDY5jg0yTcCGVcSnN7EUf8+7gMbRt0p1rUTF8MGVUkWPMzd9XrzEkYAL7D/9kcH9ScgqTQz4lNCSI3RtXUKG8B/OXrlI4y6JxKuPEe3MCmDN8JqPajCDuWiz9xw/KE1O+qicDJw5m+qBgxnUazTeLNjP2iwkmyvjRtBrjHqamiqJz+fJlbt269UTHuru7s3z58mLO6OnwadOc07+dI/JKFACrv9xAj95dihxjbko0aEz2X5fQ3ogB4N53O7Bu1S5vzCuNybkZQ9aJCACyjv/MnVnBSqdaJK+1fpUzp85x9co1AL7+cjPde3Uqcoy52fjtbnp29aVD69cM7j/6y2/UqVWDShU9Aejj14Xvwg6h05nvZ/B6LV/h8pm/iL16E4B9X3/Pa9198sRkZWax9MPFpMQnA/D3mcs4uzpjVcK8BoS0Rj5MrcC/zYiICD777DOsrKyIjo7Gy8uLkJAQ9uzZw+rVq9FqtdSpU4epU6diY2ND06ZNefnll0lISOCbb74hNDSUAwcOYGlpSZ8+fRg0aBBRUVEEBweTkpKCra0tkydPpnbt2owfPx4HBwfOnz9PXFwc7733Hu3bt2fhwoWkp6ezdOlS3n333UfmmpSUxNChQ7l27RpVqlRh4cKFxMfHM3DgQMLDw/VxGRkZ/O9//6NLly7079+f7du3G3wtSivv6UFMzE19+0ZMHE6lHHFwLKkfjilMjLmxcHVDmxCvb2sTE7Ao6YDGzl4/xGbpWRFtchIlR32AVZVqaNPukv7l56ZKuVDKeXpwMyZO3469EYeTU973ojAx5mbSmBFAbnExJDY+EQ83V33b3bUsd9PSSUtPN9shNpdyZbl1I1HfvnUzkZJOJbFzsNMPsSVEx5MQ/eDndPDkIZw48AvZWdmK5/s45lvaC6dQPZ1Tp04xadIk9u7dy/3791m5ciWbN29m48aN7NixAxcXF1auXAlAcnIyQ4cOZceOHRw4cIDffvuNXbt2sWXLFrZu3UpCQgIffvgh48aNY9u2bUybNo3AwED9c8XGxrJ+/XqWLl3K7NmzcXJyIiAggDZt2jy24ADcuHGDKVOm8P3335OYmMjRo0fzxWRlZeHv74+vry/9+/fnr7/+euRrUZqFhYXBnyhtjrZIMeZGozGcs077IGeNlSXWjZpyf+8ubo9+h3u7tuL00SdgVULBTIvGwkKDzsALy8nzfhUcozZarRaNgWEaCwtL5ZMpJAsLCwx1xAz9u7Gxs2HMZx/iUakcSz9crEB2z5dC9RsbN25M1apVAejevTsjR46kdOnSvP7660DuL/LatWvr4+vVqwfAr7/+SseOHbG2tsba2podO3aQlpbGuXPnmDDhwVhpeno6ycm5XdrmzZuj0WioUaMGKSkpRXoxL730EhUrVgSgWrVq+nM+bMGCBVhYWLB4ce4PU0REBFFRUY98LUqKib5Jg0Ze+na58u4kJ6eQnp5RpBhzk5MQh1XNWvq2hUtZtHdS4f49/TbtrVvkREeR/cdFIHd4jYAPsCxXnpzrUYrnXBg3omOp37Cuvu1Rzo2U5NtkPPReFCZGbcp5uHH2wh/6dnxiIk6ODtjb2Zowq8dLuJHAi/Vr6NtlPFy4k3KH+xn388SVLV+W8SsnE3P5OsF9J5F5P1PpVAukVXlfp1A9HUvLB59gdDodOTk5dOzYkR07drBjxw62bNnClClT9DG2trk/fFZWVmge+kgUHR2NVqvVF6CHj3d2dgbQD2tpDH2UKoCV1YMaqtFoDI4xd+7cGR8fHxYuXAhQ4GtR0pHwn2nYqB5VqlYCYOBbfdi3J7zIMeYm67dfsapZG4vyuXMAtp26kXn85zwxmScjsHAvh2X13F8MVnW8QKcjJ/ZmvvOZix8PHeOVhl5UrvoCAP3e6s3+7w8XOUZtmnk34Pfzl4i6njtHt2nbHtq89qqJs3q83384xYuv1MSjcjkAOvTvyK9hEXlibEva8dGmGUTsPcb8kXPNsuCA+ud0ClV0Tp48SVxcHFqtlu3btzNx4kT279/PrVu30Ol0BAcHs3r16nzHNW7cmLCwMLKyssjIyODtt98mMTGRypUrs2PHDgB+/vln+vfv/9jnt7S0JDu7eMZVa9Wqxbhx49i1axcXL16kSZMmhXotSkhMTGL0e5NYsSaUHyJ2U6t2DYInzaZe/Toc+HHrY2PMme52CndDZ+E44WNKfb4Gy8pVSV+xBMvqNSm1aEVuTHISd6ZNouSIQEotWUXJYf7cCZkMWeb5Dx/gVmIS40ZO4bNVc9l/bBs1a71IyOS51K1fm+8Ob3psjNqcu/gnPQe9B4BLaWemTwwkMCiErv2G8deVq4wbOdTEGT5e6q3bLBm3gLFLxxN6cAmVXqrEmulfUq1udebsCQWg46DOlPV0xdu3KXP2hOofDs6OJs4+L52RD1PT6ApYchIREUFwcDBubm7ExcXRvHlzJk6cyNatW/WT77Vq1WLGjBnY2NhQs2ZN/vjjQdd7/vz5hIeHo9Vq6d+/P/369ePvv//WLyQoUaIEwcHBeHl5MX78eLy9venRoweA/lyRkZEMGzYMX19fxo4d+8g8Fy9ezNq1awH05/L29tYvJHj4/Nu2bePrr79m8+bNj3wtheHhXKvgIBU639zN1CkUu0bHizZcqxZ//rHN1CkUuzcajjZ1Ck/FN1E7jT5HcKXHf0gv8PiodUbnYIxCFZ2Hf5mLvKToqIcUHfWQovNoai865rUAvQAnTpxg2rRpBvctW7YMd3d3hTMSQghlmcMFnsYosOg0adKEJk2aKJFLgRo1aqSfCxJCiOeR2levqaqnI4QQzzt1lxyV3AZHCCHEs0F6OkIIoSLmcK2NMaToCCGEisicjhBCCMWou+RI0RFCCFVR+/CaLCQQQgihGOnpCCGEisicjhBCCMWou+RI0RFCCFVR+5yOFB0hhFARQ99EqyaykEAIIYRipKcjhBAqIsNrQgghFCOr14QQQihG3SVH5nSEEEIoSHo6QgihIjK8JoQQQjGykOA551jC3tQpPBVHTnqaOoVil6lNNHUKT8UbDUebOoVit+FkqKlTMFtynY4QQgjFaI18FMWuXbvo1KkTHTp0YN26dfn2HzhwgO7du9OtWzdGjBjB7du3CzynFB0hhBD5xMXFMX/+fNavX8/27dvZtGkTly9f1u+/e/cuwcHBLFu2jJ07d1KzZk0WLVpU4Hml6AghhIrojPwvNTWV6OjofI/U1NQ8z3P06FGaNm2Ks7Mz9vb2+Pr6snfvXv3+rKwspk6diru7OwA1a9bk5s2bBeYvczpCCKEixi4kWL16NYsXL8633d/fn5EjR+rb8fHxuLq66ttubm6cOXNG3y5dujTt27cH4N69eyxbtowBAwYU+PxSdIQQQkW0OuMWEgwaNAg/P798252cnPI+j1aLRqPRt3U6XZ72P+7cucN7773HSy+9ZPC8/yZFRwghVMTYtWtOTk75CowhHh4enDhxQt9OSEjAzc0tT0x8fDxDhgyhadOmTJw4sVDPL3M6Qggh8mnWrBnHjh0jKSmJjIwMwsLCaNmypX5/Tk4Ow4cPp2PHjkyaNMlgL8gQ6ekIIYSKKHVHAnd3dwIDAxk4cCBZWVn06tULLy8vhg4dSkBAALGxsVy4cIGcnBz27dsHwMsvv0xISMhjzytFRwghVETJi0O7du1K165d82xbvnw5AHXr1uXSpUtFPqcUHSGEUBG13wZH5nSEEEIoRno6QgihInKXaSGEEIpR+w0/pegIIYSKqH1OR4qOEEKoiM7IOxKYmiwkEEIIoRjp6QghhIrIQgIhhBCKkTkdIYQQilH76jWZ0xFCCKEY6ekIIYSKyJyOEEIIxciSaVGsWrVvwa7DG9l37FsWrvwEB4eSTxRjbjza1adt+Cza/zQX7+WjsHKwe2Rsuf80ouvllQpm9+TadmjJ/p+28sMvu/li1ac4OOZ/LwoTY04atGnEvL0LWRD+GWM++xA7A+/Va36tmPv9AubsCSVk6ydUq1vdBJkWjU6nY+K0uaxa/43B/UeO/oLfwHfp0vdt3g8K4W5amsIZFo7WyIepSdExI2VcnJm1YCr+/xuH76s9uX41mrGTRxY5xtxYuzjSIPQdjg8JZX+LsaRFxfFyUF+DsSWreFB3ar9CfyGUKZVxKc2ni6czbOBoWnp3ISoqmolT3y9yjDlxKuPEe3MCmDN8JqPajCDuWiz9xw/KE1O+qicDJw5m+qBgxnUazTeLNjP2iwkmyrhw/r56jSEBE9h/+CeD+5OSU5gc8imhIUHs3riCCuU9mL90lcJZFo7OyP9MrdBF55/vwX6cCRMmEBMT89iYAQMGEBERUdinfWq2bt3K+PHjTZ1GHi1avcrZ0xeIunIdgPVffUO3Xh2LHGNu3H28SDl9hbTIWAAiVx+gYo/m+eIs7axpvGQEZ6d+rXSKT8SnTTN+P3WOyCvXAFizciN+vTsXOcac1Gv5CpfP/EXs1ZsA7Pv6e17r7pMnJiszi6UfLiYlPhmAv89cxtnVGasS5jtav/Hb3fTs6kuH1q8Z3H/0l9+oU6sGlSp6AtDHrwvfhR1S/VCWOSp00bl9+zYXL158bExERIS8SUbw8HTnZkysvh17Ix5HJ4c8w2eFiTE3duXLkB5zS9/OuJFECSf7fENsr8weQuTag9y+eE3pFJ9Iec9y3Hjovbh5Iw4nJ8c8w2eFiTEnLuXKcutGor5962YiJZ1K5hliS4iO57fwE/r24MlDOHHgF7KzshXNtSgmjRlB5w6tH7k/Nj4RDzdXfdvdtSx309JJS09XIr0i0aIz6mFqhf5oMn36dOLj43nvvfdo06YNq1atQqPRUKdOHSZPnsy6deuIj49n2LBhrFu3juPHj7Nq1Sru3btHZmYmM2bMoEGDBgU+T3R0NG+//TalS5fG1taWlStXMmPGDI4dO4ZGo6Fbt24MGzaMiIgIFi9ezNq1awEYP3483t7eeHt74+/vz4svvsjFixdxcXFhwYIFODs7s337dpYuXYqDgwOenp7Y29sD8Mknn/Dzzz9jYWFBu3bt8Pf3f8K/TuNYWGgwVLNztDlFijE3GgvDn2102gcjzFUHt0OXoyVqwxHsK5ZVKjWj5L4X+d+MnBxtkWLMiYWFhcGfL62BfG3sbPCfNxqXcmWZPij46Sf3FGm1WgyN6FpYWCqfTAHU/sG+0D2doKAg3NzcCAgI4PPPP2ft2rXs2rULOzs7Fi9ezLBhw3Bzc2PZsmWUKlWKjRs38vnnn7Nz507efvttli1bVuikIiMjmTNnDqtWrWLDhg3cvHmTnTt3smXLFsLCwjh8+PBjj7906RJvvfUWu3fvxsnJiV27dhEXF8fcuXNZt24dmzZtIu3/JwljYmL44Ycf2LlzJxs2bODy5cvcv3+/0LkWpxvRsbh5PPiF617OlZTk22Sk3ytSjLlJj0nE1t1Z37YtV4bM5LvkpD/4e36hjw/O9avS5sAMmq37AEtba9ocmJHnOHMTE30Tdw83fdujvBvJybfJSM8oUow5SbiRQBn3Mvp2GQ8X7qTc4X5G3n8TZcuXJWTrbLQ5OQT3nUR6qnlOuhdWOQ83EhKT9O34xEScHB2wt7M1YVaGqb2nU+SFBL/++iutW7emdOnSAPTp04fjx4/nPamFBUuWLOGnn35iwYIFbNu2Tf9LvjBcXFyoUKECkDtk5+fnh6WlJXZ2dnTt2pVjx44VeHzt2rUBePHFF7l9+zanTp3ilVdeoWzZslhZWem/99vd3R0bGxv69u3LmjVrGDt2LDY2NoXOtTj9dPg49RvWpVLVigC8MbgXB/ceKXKMuYk/cpYyDV+kZBUPAKoObMvNfSfzxBzuOJmDrT4kvN1EjvafTc69TMLbTeReXIopUi6UI+FHadDIiypVXwBgwFt9CNsTXuQYc/L7D6d48ZWaeFQuB0CH/h35NSzvHKxtSTs+2jSDiL3HmD9yLpn3M02RarFq5t2A389fIup67pz0pm17aPPaqybOyrDnZiHBP7TavN1snU5Hdnbesdy0tDR69epFdHQ0jRs3ZsCAAUV6DlvbB58uDD1fTk4OGk3eYYusrCz9nx8uGv/E/TveyspK//8tW7YwatQoUlJS6Nu3L5GRkUXKt7gkJSYzftRHLFo5m70/f0PNWtWZOWU+L9erxc5D6x8bY87uJ6ZycvQXNFkxinY/zMGpVkXOBH+Nc70qtDkww9TpPbFbiUm87x/EstWhHD6+k1q1X+TjoDl41a9D2A/fPjbGXKXeus2ScQsYu3Q8oQeXUOmlSqyZ/iXV6lZnzp5QADoO6kxZT1e8fZsyZ0+o/uHg7Gji7Ivm3MU/6Tkod3GUS2lnpk8MJDAohK79hvHXlauMGznUxBk+mwo9p2NlZUV2djbe3t6sWbOGESNG4OzszObNm2nSpAkAlpaW5OTkcPXqVTQaDcOHD0en0/HBBx+Qk/Nkcw5NmzZl+/bttG7dmszMTHbt2sXw4cMpXbo0169f5/79+2RkZHDy5EmaN8+/IuofDRs2ZNq0acTFxeHq6sqePXtwcnLiwoULTJs2jbVr1/Lqq69y4cIFIiMjqVKlyhPla6wjB37myIGf82y7nZJKt9b9Hhtj7uIOnibu4Ok821JSIglvNzFfbPr1RHZW+59SqRklfP+PhO//Mc+2lNO36dCy52NjzNmpQyc5dShvT/Tu2cuM6zQagG2ffcO2zwxf62LuQoLG6P/8cq0afLt6ib7dspk3LZt5myKtItGqfE6n0EXHxcWF8uXLExISwjvvvMOAAQPIysqiTp06fPTRRwC0atWKYcOGsXz5cmrVqkXHjh3RaDS0aNGCkydPFvAMhvXp04erV6/SvXt3srKy6Nq1K+3btwfAx8eHzp074+npScOGDR97nrJlyxIUFMTgwYOxs7OjevXci9lq165N/fr16dKlC3Z2djRo0ICWLVs+Ua5CCPG0qbvkgEan9qUQJvai6+OLnVp9YlnT1CkUu5H3fzd1Ck/Fq07VTJ1CsdtwMtTUKTwVJcpWNfoczT3bGHX8zzGmnVM0ydVc165dY+RIw1fRT58+nbp16yqckRBCCCWYpOi88MIL7NixwxRPLYQQqmYOy56NYb73rRBCCJGP2mdEpOgIIYSKSE9HCCGEYszhAk9jyFcbCCGEUIz0dIQQQkVkTkcIIYRiZE5HCCGEYqSnI4QQQjFq7+nIQgIhhBCKkZ6OEEKoiNqXTEvREUIIFXluvtpACCGE6am9pyNzOkIIIRQjPR0hhFARGV4TQgihGLUPr0nREUIIFZGejhBCCMWovacjCwmEEEIoRno6QgihIjK89pz7K+GkqVMQhdTD1AkIUQzUPrwmRUcIIVREp9OaOgWjSNERQggVkbtMCyGEEIUkPR0hhFAR+RI3IYQQilH78JoUHSGEUBG193RkTkcIIYRipOgIIYSKaHU6ox5FsWvXLjp16kSHDh1Yt25dvv0XL16kR48e+Pr6MmnSJLKzsws8pxQdIYRQEZ2R/xVWXFwc8+fPZ/369Wzfvp1NmzZx+fLlPDHjxo1jypQp7Nu3D51Ox+bNmws8rxQdIYRQEZ1OZ9QjNTWV6OjofI/U1NQ8z3P06FGaNm2Ks7Mz9vb2+Pr6snfvXv3+mJgY7t27R/369QHo0aNHnv2PIgsJhDDCoUOHaN26Ndu3bze4/7///a/CGYmiyMzMxNramqioKCIjI2nZsiUWFub9WdzY1WurV69m8eLF+bb7+/szcuRIfTs+Ph5XV1d9283NjTNnzjxyv6urK3FxcQU+vxQdM3f79m3mzJnDtWvXWLhwIZ988gnjx4+nVKlSpk6tyF566SU0Go2+bWVlhaWlJffv38fBwYFff/3VhNk9mbNnz9K6dWsiIiIM7n8Wik5mZiYrV64kMjKSKVOm8NVXXzFs2DCsra1NnZpRFi9ezJUrVxg7diz9+/enevXq/PTTTwQFBZk6tadq0KBB+Pn55dvu5OSUp63VavP8e9XpdHnaBe1/FCk6Zm7y5Mk0b96cM2fOYG9vj5ubG+PGjWPZsmWmTq3ILl26BMDUqVNp0KAB3bp1Q6PRsG/fPn788UcTZ/dkAgICAJg5c6aJM3l6Pv74Y8qUKcOFCxewtLTk2rVrTJw4kblz55o6NaOEh4ezfv161qxZQ7du3fjggw/o0cP8bwtr7JJpJyenfAXGEA8PD06cOKFvJyQk4Obmlmd/QkKCvp2YmJhn/6OYdz9SEB0dTZ8+fbCwsMDa2prAwEBiY2NNnZZRzpw5Q/fu3fWfinx9fTl37pyJszLO4cOH6d27N+3ataNt27b6x7Pg/PnzvP/++1hZWWFnZ8cnn3yi/wChZlqtFltbWw4dOoSPjw9arZaMjAxTp1UgpVavNWvWjGPHjpGUlERGRgZhYWG0bNlSv9/T0xMbGxtOnsy90/6OHTvy7H8U6emYOUtLS+7cuaP/BX316lWzH3MuiJ2dHd9++y0dO3ZEq9WyY8cOVQ4XPiwkJIRJkyZRvXr1Qg0xqIlGoyEzM1P/upKTk5+J1/jqq6/SpUsXbG1tady4MW+++SatW7c2dVoFUuriUHd3dwIDAxk4cCBZWVn06tULLy8vhg4dSkBAAHXr1mXu3LkEBQVx9+5d6tSpw8CBAws8r0an9stbn3E//PADn376KTdv3qRhw4acPn2aGTNm0KpVK1On9sRiYmKYNm0aERERWFhY0KxZM4KCgnB3dzd1ak+sR48ebN261dRpPBXbt29ny5YtREVF0bFjRw4cOMCIESPo3bu3qVMz2o0bN/Dw8MDCwoKLFy9Sq1YtU6dUoFIO1Yw6/vbdv4spkycjRUcFkpKSOHPmDDk5OdSrV4+yZcuaOqVikZKSgrOzs6nTMMo/ix+2bNmCk5MTbdu2xcrqwQBC48aNTZVasbp8+TIRERHk5OTg7e1NzZo1VdvbmTBhwmP3m/v8nNqLjgyvmbl/L228dOkStra2VKtWTbW9nYsXLxIYGMi9e/fYtGkTb775JqGhodSpU8fUqRXZwoULgdwhqNjYWP788888+9esWWOKtIrV+vXr6devH9WrVwdyfwZff/11tmzZYuLMnoy3tzeQu9w9LS2Nbt26YWVlxZ49e3B0dDRxdgVTez9B3ZMDz4Fr167x448/6lecHDt2jF9//ZXNmzcze/ZsU6f3RKZPn86SJUtwdnbG3d2d4OBgpk6dauq0nkilSpVYu3btIy/EGz58ON9//72p0zTK7t27Wbt2Lffv32f27NkMHTqU/v37mzqtJ+bn54efnx83b95k+fLldO/enc6dO7No0aJ8V9ybIyVvg/M0SE/HzEVGRrJu3Tr9SMNFhgAADfxJREFUNRF9+/ZlwIABbNq0Sb/MU20yMjKoVu3BEEHz5s355JNPTJjRk+vbty9AnovqHpaamkpwcDAdO3ZUMq1i9eWXX+Lv78+yZcto1aoVu3fvVv3CD4A7d+6QkpJCmTJlgNwlv+np6SbOqmBFuZWNOZKiY+ZSU1PJzs7WF53MzEzS0tIA9XaznZ2duXTpkn5OYOfOnar9Jfbyyy8DD4ZsDMnKylIqnWL18F0WOnTowMWLF7G3t+fQoUOA+i98HT58ON26daNBgwbodDpOnz79zF8Yag5kIYGZW7NmDRs2bKBVq1ZotVp++OEHBgwYQGZmJmfPnmXevHmmTrHIrl27xocffsjZs2extbWlUqVKzJ07lypVqpg6NfEQtU+4F0Z8fDynTp1Co9HQsGFDXFxcTJ1SgezsKhl1fEZGVDFl8mSk6Ji5+/fvs3z5cjQaDU5OTuh0OpKTk+nevTvly5dX5a1INm7cSN++fUlPT0er1eLg4GDqlMRzKDU1lV27dpGSkpJn1MDf39+EWRXM1vYFo46/d+9aMWXyZGR4zcyNGTOG27dvc+3aNRo1akRERAQNGjSgcuXKpk7tiX399df07dsXe3t7U6ciHuOdd97hiy++oE2bNgaXRx88eNAEWRWfUaNG4ejoyIsvvqiq5d9qn9ORno6Za9++PWFhYYSEhNCzZ08cHBwYPXo03377ralTe2Jvv/02mZmZ1KtXDxsbG/12c/+E+byJj4/Hzc2NmJgYg/s9PT0Vzqh4de3alV27dpk6jSKztqlg1PGZ96OLKZMnIz0dM+fi4oJGo6FKlSr88ccf/Pe//1XtxPQ//vn+DWHe/rl5o5ubG0ePHiU5OTnPfrUXnVq1anHp0iVeeuklU6fyXJGiY+ZefPFFpk2bxhtvvMHYsWOJj49X7aq1f/j7+5Oens61a9eoUaMG9+7dk6E2MzZq1CgSEhKoVq1anmEota9e++uvv/Dz88PFxQUbGxv9rfnNfdhQ7f/+ZXjNzOXk5HDq1CkaNWrEwYMHOXbsGK+//jo1atQwdWpP7NixY0yZMoWcnBw2bdpEly5dmDdvHi1atDB1asKA//znP4X6Rki1UeuwoZW1cfllZxp+3UqRno6Zs7S0pFGjRgDPzO3yP/30U9avX8/QoUNxdXVl3bp1vP/++1J0zNQLL7zAjRs3KF++vKlTKVaP+tJAcy86pi4axpKiIxSn1WrzfM3tP/f0EuZlwIABaDQakpKS6Nq1Ky+99BKWlpb6/Wq/r9zD3/aalZXFyZMnadSokeqHDc2dFB2hOA8PDw4dOoRGoyE1NZV169Y9c5+inwWPurXPwxISEvJ8gFCTf1/cmpKSQmBgoImyeX7InI5Q3K1btwgJCeHo0aPodDqaNGlCUFBQob7qVpgXPz8/tm3bZuo0ikVmZiZdunQhLCzM1Kk806SnIxQzYMAA1q5dy6ZNm/i/9u41JorrjeP4d2EVRUS8QUy9xMsLiImmieiqTUVEo02NgiIvVAglaI0Wo9EYsdoqxUS8RSlpba31gjGKGkWjoihvmigrjUpdIDGNIgiCoIsVNiC70xfEjf4V+4/InN3h+SQkzMybH8bJM+fMmfPs2rVLdRzxEXjzM+ur6UNo+zsqKyuZMmWK4lTGJ0VH6KayspLdu3dz6tQpXC7XW9fl41Dv401f8v+v16cPTSYTffv2lfeLOpB+OkI3WVlZXrlXnDCm8ePH43A4KCgo4PLlyzx48EB1pC5BRjpCNwcOHGDHjh0EBgayePFi1XFEF/frr79y+fJlZs+ejaZp/Pzzz9y7d49ly5apjmZoUnSEbqxWKzk5Ofz+++/vbAssS1W9jze/08nNzSUnJ4cePXoAsGDBAmJiYqTodDKZXhO6SUtL49atWzQ2NlJYWPjWj/BM+/bte+vcq4Ug3tz0TNM0d8EB8PPzw2yW5/DOJkumhe5ycnKIjY1VHUP8hx07dlBfX8+1a9eIjIx0n29tbaW4uJi8vDyF6Truhx9+oKamhujoaKCtU2pwcLBXF1JvIEVH6K6+vp4tW7Zw48YNnE4nEyZMYPPmzQwYMEB1NPGa4uJi/v77b/bu3UtKSor7vK+vL2PGjPHqnk7QNtI5duwYN27cQNM0LBYLcXFxMtrpZFJ0hO5WrFjBp59+SlxcHC6Xi+PHj1NUVPTOaRyh3j///PPOd3DeLikpid9++011jC5H3ukI3VVUVJCUlERAQACBgYEkJydTVVWlOpZoR35+PhMmTCAsLIywsDBCQ0MJCwtTHavDHA4H1dXVqmN0OTKOFLozmUxUV1czaNAgAKqqqmRKw4NlZWVx5MgRr26n8S7Pnj0jMjLS6/rpeDu504XuVq5cSVxcHGPHjkXTNO7cuUNaWprqWKIdwcHBhis4APv372/3ms1mY/To0Tqm6TrknY5Q4unTpxQXF+NyuRg7diz9+/cHoKCggKlTpypOJ16Xnp5OTU0NkydPxs/Pz33eyN9VGWkjU08jIx2hRL9+/YiIiHjr/N69e6XoeJgXL17Qq1cvbt++/cZ5IxcdeRbvPFJ0hEeRm93zvOo709DQQJ8+fRSn0Yc3b2Tq6WT1mvAocrN7nrKyMmbOnMmcOXOoqalh+vTp2Gw21bGEl5KiI4R4r7S0NLKysggKCiIkJITvv/+e7777TnUs4aWk6Agh3svhcDBy5Ej38eTJk2lpaVGYqPPJNG/nkXc6wqPIze55goKCKCsrc0995ubmevW7nZs3b773enh4OJmZmTql6XpkybTQnd1up6SkhEmTJrFv3z5sNhtr1qxh6NChNDc3v7EsV6j38OFD1q1bx19//UWPHj0YNmwY27dvZ8SIEaqjfZD39XIymUwcPnxYxzRdjxQdobukpCQmTZpEWFgY27dvJyEhgVOnTnHkyBHV0UQ76urq8Pf3x+VyUV9fz7Bhw1RHEl5K3ukI3TU0NJCUlMTVq1eJjo5m7ty5NDY2qo4l2nH48GGSk5Px9/enoaGBr7/+muPHj6uO1WG3b99m2bJlJCQkEB8fz6JFi95o4SA6hxQdoTuXy8Xdu3fJz89n6tSplJaW4nQ6VccS7Thx4gRHjx4F4JNPPuH06dNkZ2crTtVxqampREVF4XQ6WbhwISEhIURFRamOZXiykEDobu3atWRkZJCYmMiQIUNYsGAB69evVx1LtOPly5d0797dfdytWzeFaT6e7t27M2/ePB49ekRgYCAZGRnMnj1bdSzDk6IjdGez2di5cycDBw4E2p6kheeKiooiISGBWbNmYTKZyMvLY9q0aapjdZifnx92u53hw4dz584dJk6cKCNuHchCAqG7H3/8kfPnzzN06FCio6OJiooyzNOzETmdTq5cucLNmzcxm82Eh4cbYhrq4sWLnDhxgszMTGJjY/Hx8SE0NJSdO3eqjmZoUnSEMkVFRZw/fx6r1YrFYiE2NtYQzcGMxqg7Ljc0NBAYGIjJZKKpqYkHDx7Qu3dvhgwZojqaoclCAqFEU1MTlZWVVFRU4OPjQ58+fUhPT5enTA80YMAAioqKDLMLQXV1NVVVVSxcuJDHjx9TVVWF3W6nd+/eJCcnq45neDLSEbpbs2YN169fZ8qUKcTExDBu3DgAWlpa+Oyzz7BarYoTitdZLBbsdjvQ9vHkqw6bpaWlipN9mPXr11NYWEhtbS3BwcHu82azmYiICFJTUxWmMz4pOkJ3J0+e5IsvvsDf3/+ta0+ePHEvMBCiM/3yyy8sWbJEdYwuR4qO0F19fT3nzp2jsbERTdNwuVxUVlaSkZGhOpp4h5aWFg4cOMD9+/fZuHEjBw8eZMmSJW8so/ZGTU1NZGVlcf36dZxOJxaLhZUrV77zYUh8PPJOR+hu1apVlJaWkpubi8PhIC8vDx8f+a/oqbZs2UJTUxM2mw1fX1/Ky8sNMQWVlpaGw+Fg69atbNu2jZcvX0rLBh3InS50V1tby7Zt24iMjGTGjBlkZ2dTUlKiOpZoh81mY/Xq1ZjNZnr27ElGRgZlZWWqY3WYzWZj06ZNhIaGEhoayqZNm6Q5nQ6k6AjdvdoWf/jw4ZSVldG3b19paeDBTCbTGyvXnj17ZogOr5qm8fz5c/fx8+fP8fX1VZioa5AdCYTuLBYLKSkprFu3jq+++gqbzSbz6B4sPj6exMRE6urqSE9PJz8/n+XLl6uO1WGJiYnMnz+fyMhINE2joKBAFhboQBYSCN2cOXPG/Xtraytms9n91Nzc3MzSpUsVphPtebWQIDMzE5fLRWpqKosWLfL60c4333xDSkoKVqsVTdMIDw9n69atHDp0SHU0Q5ORjtBNYWEhABUVFZSXl/P555/j6+vLH3/8wahRoxSnE+3ZuHEjzc3N7qJz9uxZHj58yIYNG1RH+yArVqygtLSU2tpaSkpK3FO7+/fvZ9CgQYrTGZ+MdITuFi9ezJ49e+jXrx/Qth3J8uXLDbFdvhHNnDmTS5cuuY9dLhdffvklFy5cUJjqw7148QK73U56ejrffvut+7zZbKZ///6YzfIs3pnkX1forra2lqCgIPdxz549efLkicJE4n0GDx5MeXm5u1toXV0dISEhilN9uICAAAICAvjpp59UR+mSpOgI3UVERJCYmMiMGTPQNI2LFy8ya9Ys1bFEO1pbW5kzZw7jxo3DbDbz559/MnDgQOLj44G2zqJC/L9kek0okZeXh9VqxWQyMXHiREP0ZzGq/9oLb/z48TolEUYgRUcIIYRu5ONQIYQQupGiI4QQQjdSdIQQQuhGio4QQgjdSNERQgihm38B2FiW1ImCszwAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["f, ax = plt.subplots(figsize=(6, 6))\n","corr = data.corr(method='pearson')\n","sns.heatmap(corr,square=True, ax=ax,annot=True,fmt=\".1f\")\n"]},{"cell_type":"markdown","metadata":{"id":"7mL_HaYV_p10"},"source":["__(days_offered,percent_hike), (age,jhi) are correlated above 0.60__"]},{"cell_type":"markdown","metadata":{"id":"-q0BpVJn_p11"},"source":["It is good idea to see the relation between the following attributes\n","- days_offered vs sourcing_channel\n","- education level vs job hopping index\n","\n"," \n","If you observe in the above 2 cases one variable is numerical variable and the other one is categorical variable.\n","\n","So this is __Numerical variable relationship w.r.t Category__\n"," Let us see how to plot them."]},{"cell_type":"markdown","metadata":{"id":"oBGGwaVZ_p11"},"source":["#### days_offered vs sourcing_channel"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vcbBIhM2_p12","outputId":"91087881-db7d-4393-d0e8-f0944db4af81"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAfYAAAEbCAYAAAAoMabgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeVxN+f8H8FerLSqRfeyFaGGkMJItWxqFIbLvosmMLWGsmWwjy1gHQzNjK5mJhskgUxhmZMzE11BkmZSUdrd7P78/+jnjTsptvblez8ejx6N7ls95n/c5577v2bWEEAJERESkEbTVHQARERGVHhZ2IiIiDcLCTkREpEFY2ImIiDQICzsREZEGYWEnIiLSICzspPF69OiBZcuWqTuMfDZt2gQbGxt1h1Ek5ubm2L17t1qm7eHhgSlTphRpnKCgIJibmyM5ObmMoio7z58/x6RJk2BpaYkuXbrgxYsXCAkJQbdu3WBpaYmdO3eWe0xv4zr7LtJVdwBEZW3z5s2oUaOGusMgKpKQkBCcP38eq1evRuPGjaGvr49Vq1bB3NwcM2fORKNGjdQdIlVQLOyk8dq0aaPuEIiKLDU1FVWqVMHgwYOlbikpKejWrRs6duyoxsioouOheCoV0dHRGDlyJGxsbGBra4tZs2bh4cOHUn+ZTIYdO3bAyckJ7dq1g7OzM77//nup/4MHD2Bubo6wsDCldl1cXDB//nwAwKVLl2Bubo7vvvsOXbt2hYODAx48eAAAOHjwIAYMGABLS0v07dsXhw4dktp49VB8UFAQOnXqhKioKLi4uKBt27bo378/wsPDlaZ78eJFDBkyBJaWlhgwYAAiIiLQpk0bBAUFFSkvN2/exMSJE9G+fXt07twZCxYsQEpKitIwJ06ckPLi6uqK3377Tan/8ePH4ebmBisrK1hZWWH48OH49ddfpf7z58/HrFmzsG/fPjg6OsLS0hIeHh64c+eONIyHhwf8/PywYcMGdOnSBVZWVpg+fToSEhKUpvXDDz/A2dkZ7dq1Q69evbB///4iza9MJkNAQACcnJzQtm1bdOzYEZ6ennj8+LE0TI8ePbBz504sWbIEtra2aN++PebNm4f09HRpmIyMDPj6+sLW1hadOnXCjh07VJr+sWPH4OTkBEtLS0yaNClfroUQ2LdvnzSPNjY2GDduHG7dugUAOHPmDMzNzfHHH38ojbdt2zZ07twZubm5SExMhJeXFzp16gQrKyu4u7vj8uXLRcoTAJw+fRpubm6wtraGg4MDvvjiC8hkMgB5y2vTpk3IysqCubk5PDw8YG5uDgBYs2aN9D/w5mVmbm6Obdu2YcCAAejUqZO0jd24cQNjxoyBlZUV7OzssHz5cmRlZSmNu3v3bjg6OsLa2hpz5sxBdnZ2keeT1EAQlVBmZqawtbUV3t7eIjIyUoSFhYmePXuKYcOGScN4e3sLKysrsWvXLhERESEWLVokzMzMxKFDh4QQQsTHxwszMzNx8uRJpbYHDRok5s2bJ4QQ4uLFi8LMzEx88MEHIjw8XAQHBwshhPjqq6+Eubm58PPzE7/88ovYsGGDMDMzE99//70QQghHR0exdOlSIYQQR48eFRYWFqJ79+7i4MGD4sKFC8Ld3V20a9dOPHv2TAghxM2bN0Xbtm3FlClTxNmzZ8XOnTtF+/bthZmZmTh69KjKeXnw4IGwsbERH330kTh9+rQIDQ0VH3zwgRg/frwQQoiAgABhbm4uevXqJX744QcRHh4u+vbtKzp37ixkMpkQQoiTJ08Kc3NzERAQIC5evChCQ0NFv379RJcuXUROTo4QQoh58+aJDh06iA8//FCcPn1ahIWFiQ8++EAMGTJEimXUqFGiQ4cOYsyYMeLs2bMiKChItG/fXnh5eUnDBAUFCTMzM7F06VIREREhNm3aJFq3bi127twpDWNmZiZ27dpV4DwvXbpUdOzYURw+fFhcunRJHDhwQLRv3154enpKwzg6OooOHTqIjz/+WERERIh9+/YJCwsL4e/vLw0zefJkYWtrKw4fPixOnz4tBg0aJCwsLMTkyZMLnPaJEyek+M+fPy+WLl0qLCwshJmZmXj69KkQQohdu3aJtm3bir1794pLly6Jo0ePiq5du4rBgwcLIYSQyWTCzs5O+Pn5KbXdv39/sXLlSiGEEBMmTBAffvihCA8PFxcuXBDjx48X1tbW0vqjiu+++06YmZmJJUuWiIiICLFjxw7Rrl078cknnwghhLh9+7bw8fERlpaW4vfffxcPHz4Uv//+uzAzMxPLly8Xv//+uxBC9WVmYWEhAgMDxYkTJ0RiYqK4ffu2sLKyEmPGjBFnzpwRhw8fFnZ2dkr53bVrl2jdurXYuHGjOHfunPDy8hIWFhbC2tpa5fkk9WBhpxKLjo4WZmZm4rfffpO6Xbp0SWzcuFHI5XJx8+ZNYWZmJr799lul8by9vYWdnZ3Izc0tUmF/tbDI5XJha2srFixYoDTe7NmzxWeffSaEyF/YzczMRGhoqDRsTEyMMDMzE2FhYdK4vXr1koqrEELs3r27yIV95cqV4v333xdpaWlSt59++kn06dNHJCcni4CAAGFmZiZ9SQshxI8//ijMzMxETEyMEEKI7du3i2XLlim1e+rUKWFmZiZu3bolhMgr7K1atRIJCQnSMPv27RNmZmYiOTlZCJFX2G1tbUV2drY0zKpVq6QvablcLrp27SoVlpc2b94sbGxsREZGhhDizYXdy8tLHD58WKnb8uXLha2trfTZ0dFRDBgwQCgUCqnbjBkzxMCBA4UQ/y6PV5dRQkKCaNu2baGF/cMPPxQTJkxQ6jZlyhSlwr58+XKxdetWpWH27NkjzMzMRHp6uhBCiBUrVogPPvhAyOVyIYQQf/31lzAzMxM3btwQQghhZWUltm3bphTb6tWrxaNHjwqM7VVyuVzY2dkJb29vpe7ffvut0rIPCAjIV0RfzX9Rltl/8+bt7S169Ogh/TgUQohff/1VmJmZicuXLwu5XC46deokFi9eLPVXKBTC2dmZhf0twEPxVGLNmjWDkZERpk6dimXLluHcuXOwtrbGrFmzoK2tjStXrgAA+vbtqzRe//79kZycrHTIWBUtWrSQ/o+NjUVKSgp69OihNMy6deuwZMmSAtuwtraW/q9bty4ASIchL1++jO7du0NX999LUP4buyp+//13dOzYEQYGBlK3nj174scff4SxsTEAQEdHB5aWllL/Bg0aAADS0tIAAJMnT8aiRYvw/PlzXLt2DcHBwTh+/DgA4MWLF9J49evXh6mpaYHzBOQdkq1UqZLSMC/7x8bG4smTJ+jevTtyc3Olv27duiEjIwPXr19XaZ6/+OILDBkyBAkJCYiKikJgYCB+++03pVgBoF27dtDS0lKKJTMzEwCkUxHdunWT+puamiots//KyspCTEyM0jgA4OTkpPTZ19cX06ZNQ3JyMq5cuYJDhw7hzJkzAP7N54cffoiEhATpdMfx48fRokULWFhYAABsbGwQEBCA2bNnIyQkBPr6+pg3bx7q1aunUo7u3LmD5OTkfOvUwIEDAUDaXt6kKMusefPmSuNeunQJXbp0gba2tjSetbU1DAwMEBUVhdjYWDx79kwpn1paWujTp49KsZF68eI5KjEDAwMcOHAAW7ZsQXBwMAIDA1GjRg14e3vD3d0dqamp0NXVhZGRkdJ4tWrVAgCkp6ejatWqKk+vZs2a0v8vz6G+2k0VlStXlv7X1s77fatQKAAAz549y9fey1iLIjU1Fa1atSp0mEqVKknTf10siYmJWLhwIc6fPw89PT20bNlSKv7ilRczVqlSRand/7bzumG0tLSkNl7m8ZNPPsEnn3ySL87ExMRC5+Ol3377DZ999hlu3bqF6tWro3Xr1ko/JlSJ5fnz59DT01P6QQQAtWvXRkZGxmun+/z5cwghpB9ML/13ud25cweLFi3C1atXUaVKFbRq1QrVqlUD8G8+LSwsYGZmhtDQUHTs2BGhoaEYNWqU1MaGDRuwZcsWnDx5EqGhodDT04Orqyt8fX2hr6//xhylpqYCAExMTJS6GxgYoFKlSkrXGhSmKMvsv9NKSUnBwYMHcfDgwdeO9zLGN+WTKiYWdioVLVu2xBdffIEXL17g6tWr2LdvH5YuXQoLCwsYGhoiNzcXKSkpSsU9KSkJAGBkZCTtvb1aiABIe3EFqV69OgDku0/55R5H+/btizwvpqam+dorzn3QBgYG+cZ78eIFoqKiVL4X+JNPPkFCQgIOHjwICwsL6Orq4ty5czh16lSR4ynMyzwuXrxY6QjCSw0bNnxjG2lpaZg6dSrat2+PTZs2oXHjxgAAf39/3Lx5U+VYjIyMIJPJ8Pz5c6XbFFNSUqCnp/facQwNDaGlpYWnT58qdX/14jmFQoFp06bByMgI33//PVq0aAFtbW0EBgbiwoULSuO5uLhg9+7dGDRoEJ48eQJnZ2el+BYuXIiFCxciJiYGx48fx549e9CwYUNMnjxZpfkDkC/W58+fIycnJ98P4IKUZJkZGBigZ8+eGDFiRL5+xsbG0tGL/66//70YkSomHoqnEjt//jzs7e2RnJwMfX192NvbY9GiRQCAR48eoUOHDgCQ74r3EydOwMTEBE2aNJH2zp48eSL1T0hIkK56L8jL0wBnz55V6r5x40b4+/sXa346duyIc+fOKf3I+O9V86po3749fv31V6W9zKioKEyePDnfl3pBrl27hv79+8PKyko6NRAREQFAeY+9pF7mMSEhAe3atZP+UlJSsHHjRpX2Iu/evYvU1FSMGTNGKuoKhQKRkZFFitXW1hYAlH68pKam4tq1awWOU7lyZVhbW+Onn35S6n7u3Dnp/+TkZNy7dw/Dhg2DmZmZdFTjZT5fNWjQIKSmpmLDhg2wtbWVDrMnJyeje/fuOH36NACgdevWmDdvHurXr6905X9hmjZtCmNj49duDwBU/jFakmXWoUMH3L17F23btpXGq1evHtatW4fbt2+jadOmMDU1zfcD8vz58yrFRurFPXYqMUtLSwgh4OnpiUmTJkFPTw/79u1DjRo10KlTJ9SsWRNOTk5YvXo1MjIyYG5ujvDwcISGhmLx4sXQ1taGoaEhrKys8NVXX6FevXrQ0dFR6cEyurq6mDJlCtasWQNjY2PY29vj119/RVhYGDZv3lys+Zk8eTJcXFwwc+ZMfPTRR4iLi8PGjRsBQOmw+ZuMGTMGwcHBmDJlCsaPH4/MzEysXbsWffr0QdOmTVVqo127dggODoa5uTkMDQ1x+vRpfPvttwBQqrce6erqYubMmVi9ejUAwN7eHg8ePMC6devQpEkTlfbYmzVrhmrVqmHr1q1QKBTIzs7GN998g5s3b0qH2l89r15YO4MGDcKqVauQk5OD+vXrY/v27cjNzS10vJkzZ2LixIlYsGAB+vfvj4sXLyoV+lq1aqF+/frYt28fatWqBW1tbRw7dkz6Ufjq9Qimpqawt7fHhQsXsGrVKql7zZo10bhxY6xYsQIZGRmoV68ezp49i4cPH6J3795vnDcg77oKT09PLF++HIaGhujZsydu3bqFTZs2oW/fvjAzM1OpnZIss+nTp2P48OHw8vKCm5sbXrx4ga1bt+Lx48do06YNtLS0MGvWLCxatAgmJibo0qULTp48iRs3bkBHR0el+Eh9WNipxIyMjLBr1y6sW7cOc+fOhUwmg6WlJfbs2SOdq167di02btyIvXv3IiUlBc2aNcOaNWswaNAgqR0/Pz989tln+PTTT1G7dm1MnjwZkZGRb5z++PHjUalSJezbtw979+5FkyZNsH79evTq1atY89O8eXNs27YNa9aswfTp09GkSRMsWLAACxcuLNK1AI0aNcKBAwfg7+8Pb29vVK9eHX379oW3t7fKbfj5+WHp0qVYsGABKlWqBHNzc+zfvx+TJk3CtWvXpL3b0jBq1ChUrlwZe/fuxVdffQUjIyMpXlUKcvXq1bFp0yb4+/tj2rRpMDY2xvvvv4+NGzdi1qxZiI6OLvQCuFetXLkSNWvWxKZNmyCTyTBkyBDUqVOn0B8zXbp0waZNm7Bx40b88MMPaNeuHebMmaP0OOFNmzZhxYoV+Pjjj2FgYIB27dphz549GDt2LK5duyZdvwDkXbx35cqVfBfgrV+/Hv7+/li7di1SUlLQtGlTrFu3Dp07d1Zp3oB/c/3VV1/h8OHDMDU1xbhx4zB9+nSV23i1naIus7Zt22Lfvn344osvMGvWLFSqVAnt27eHv78/6tSpAwAYOnQoAGDHjh0IDAxE586dMXXqVLU8ypaKRkuU5vE8Ig0QGRmJatWqwcrKSup24cIFTJgwASEhIW+8II40w6RJk2BoaIi1a9eqOxSiIuEeO9F/XLt2Dbt378a8efPQtGlTPHz4EAEBAejYsSNatWoFuVz+xnPG2traRTpsTxXH3r17cfPmTURERCg9wVAVbzpdAOQdilflCAhRcZVpYd+8eTNOnjwJAHBwcMDcuXMRGRkJPz8/5OTkoF+/ftJhyZiYGCxcuBAZGRl4//33sXTpUqX7iInKy+TJk/HixQvs2LEDCQkJMDQ0RO/evaVbisaOHfvGR4gOHjxYOvdJb5eoqChcuXIFn3766WuvNi/My3vdC+Pn5wdXV9fihkf0RmV2KD4yMhIBAQH4+uuvoaWlhYkTJ2Lo0KFYu3Yt9u/fj3r16mHKlCkYPXo0HBwcMHDgQKxYsQLW1tbw8fFB27Zt4e7uXhahEZXI3bt3C7yf+iVjY2OVLjgjzfLfZ8y/TsOGDfPdH05Umspsl7h27dqYP3++9MCG5s2bIy4uDo0bN5ZeN+js7IywsDC0aNEC2dnZ0oU1rq6uCAgIYGGnCqlZs2bqDoEqqHbt2qk7BKKyu4+9ZcuWUqGOi4vDyZMnoaWlhdq1a0vDmJqaIiEhAU+ePFHqXrt27XxvnSIiIqI3K/Ore27fvo3x48dj7ty5aNSokdJFIy/va1UoFK/tTkREREVTplenXb16FbNmzYKPjw8GDBiAy5cvKz2/ODExEaampqhbt65S96SkJKUXWqji2bMMKBS8c4+IiDSbtrYWjI2rFdi/zAr748ePMWPGDGzYsAH29vYAACsrK8TGxuLevXto2LAhfvjhB7i5uaFBgwaoVKkSrl69ig4dOiAkJCTfW5reRKEQLOxERPTOK7Or4lesWIGjR4/ivffek7oNHz4cTZo0kW53c3BwwIIFC6ClpYWbN2/C19cX6enpsLCwgJ+fn0pvSnrp6dN0FnYiItJ42tpaMDExKLC/xjx5joWdiIjeBW8q7Hw0FhERkQZhYSciItIgLOxEREQahIWdiIhIg7CwExERaRAWdiIiIg3Cwk5ERKRBWNiJiIg0CAs7ERGRBmFhJyIi0iAs7ERERBqEhZ2IiEiDsLATERFpEBZ2IiIiDcLCTkREpEFY2ImIiDSIrroDeJv88st5XLhwrsTtpKamAAAMDY1K3FbXrg7o0qVbidupKJjjsscck6bguvx6LOxqkJqaCqB0ViJ6Pea47DHHhatoRaciFJyKStPWZS0hhCjLCaSnp2P48OHYtm0b7ty5g/Xr10v9EhISYGVlhe3bt2Pz5s04evQoatSoAQAYNmwYRo4cqfJ0nj5Nh0JRprNSaj7/fDkAYN68RWqORHMxx2WPOS5caRX2+/fvAQDee69xidphYS/Y27Yua2trwcTEoMD+ZbrHHh0dDV9fX8TFxQEAHBwc4ODgAABITEzEiBEjsGDBAgDAjRs3sH79etjY2JRlSERE5aJLl26lUkjftqJD6lemF88dOnQIS5Ysgampab5+/v7+GD58OJo0aQIgr7Bv374dzs7OWLZsGXJycsoyNCIiIo1UpoV95cqVeP/99/N1j4uLw+XLlzF69GgAQEZGBlq3bo05c+YgODgYz58/x9atW8syNCIiIo2klovnDh48CHd3d+jr6wMAqlWrhp07d0r9x48fDx8fH3h7e6vcZmHnGyoaPT0dAEDt2tXVHInmYo7LHnNcPpjnsqdpOVZLYQ8PD8fu3bulz48ePUJkZCSGDBkCABBCQFe3aKG9TRfPyWRyAEBiYpqaI9FczHHZY47LB/Nc9t62HL/p4rlyf0BNcnIysrOz0ahRI6lb5cqVsWbNGsTHx0MIgcDAQPTu3bu8QyMiInrrlfse+4MHD1C3bl2lbjVr1sSyZcswbdo0yGQytG/fHuPGjSvv0IiIiN565VLYz5w5I/1vaWmJQ4cO5RvGyckJTk5O5REOERGRxuKz4omIiDQICzsREZEGYWEnIiLSICzsREREGoSFnYiISIOwsBMREWkQFnYiIiINwsJORESkQVjYiYiINAgLOxERkQZhYSciItIgLOxEREQahIWdiIhIg7CwExERaRAWdiIiIg3Cwk5ERKRBWNiJiIg0CAs7ERGRBmFhJyIi0iBlXtjT09MxcOBAPHjwAACwYMEC9OnTBy4uLnBxccHp06cBAJGRkXB2dkafPn2wYcOGsg6LiIhII+mWZePR0dHw9fVFXFyc1O3GjRs4cOAATE1NpW7Z2dnw8fHB/v37Ua9ePUyZMgXnzp2Dg4NDWYZHRESkccp0j/3QoUNYsmSJVMSzsrLw6NEj+Pj4wNnZGQEBAVAoFLh+/ToaN26MRo0aQVdXF87OzggLCyvL0IiIiDRSme6xr1y5UulzUlIS7OzssGTJElSvXh1TpkzBkSNHULVqVdSuXVsaztTUFAkJCUWalomJQanEXB709HQAALVrV1dzJKVn586duHv3rrrDkMTH3wMArF+/Ss2R/KtZs2aYNGmSusMoNZq4HldEzHPZ07Qcl2lh/69GjRphy5Yt0mcPDw8cO3YMTk5O0NLSkroLIZQ+q+Lp03QoFKLUYi1LMpkcAJCYmKbmSErPrVu3Eff3TdQ1KNdVqkBVhAIAkBZ/S82R5PknPRcymVyjlrkmrscVEfNc9t62HGtraxW6M1uu38K3bt1CXFwcnJycAOQVcF1dXdStWxeJiYnScImJiUrn4OntUNdAF+Msa6o7jAppz/VkdYdARO+Icr3dTQiBVatWITU1FTKZDAcPHkTv3r1hZWWF2NhY3Lt3D3K5HD/88AO6detWnqERERFphHLdY2/VqhUmT56MESNGIDc3F3369MHAgQMBAKtXr8bMmTORk5MDBwcH9O3btzxDIyIi0gjlUtjPnDkj/T9y5EiMHDky3zD29vY4fvx4eYRDRESksfjkOSIiIg1SMS5hLmPffPO1dPtTRXD/fl4sn3++XM2R5GnUqDHc3UerOwwiIioF70Rhj4+/h1u3/4ZOZSN1hwIAUMjz7pn8Oz5JzZEA8uwUdYdARESl6J0o7ACgU9kIVRv3VHcYFU7mvXB1h0BERKWI59iJiIg0CAs7ERGRBmFhJyIi0iAs7ERERBqEhZ2IiEiDsLATERFpEBZ2IiIiDcLCTkREpEFY2ImIiDQICzsREZEGYWEnIiLSIO/Ms+KJiKhi4Bs336wkb91kYScionIVH38Pf9/+G9Wq1FR3KAAAIc8rhY8fJKs5kjwZWSWLo9DCvnnz5kJH9vT0LNHEiYjo3VStSk1YNO+r7jAqpD/vhJVo/ELPsT979gzPnj3D1atXceTIEaSkpCA9PR0hISG4efOmShNIT0/HwIED8eDBAwDAwYMHMXDgQDg7O2PBggV48eIFgLwfEY6OjnBxcYGLiwsCAwNLNGNERETvokL32BctWgQAGD16NIKCglCzZt5hk2nTpmH69OlvbDw6Ohq+vr6Ii4sDAMTGxmL37t0ICgpCtWrVMH/+fHzzzTcYO3Ysbty4gfXr18PGxqaEs0RERPTuUumq+MTERKmoA0CNGjXw9OnTN4536NAhLFmyBKampgAAfX19LFmyBAYGBtDS0oKZmRkePXoEALhx4wa2b98OZ2dnLFu2DDk5OcWZHyIioneaShfPmZubY8GCBXBxcYEQAkeOHIGVldUbx1u5cqXS5wYNGqBBgwYAgOTkZAQGBsLPzw8ZGRlo3bo15syZg8aNG2P+/PnYunUrvL29VZ4RExODAvvp6emo3M67SE9PB7VrVy9xG9mlFI+mKo08VyQvtytNmqeKSBPzzO/kNyvJ94VKhX3FihUICAiQCnW3bt0wc+bMYk0QABISEjBx4kS4ubmhU6dOAICdO3dK/cePHw8fH58iFfanT9OhUIjX9pPJ5MWO9V0gk8mRmJhW4jaocKWR54rk5TLXpHmqiDQxz/y+eLPCvi+0tbUK3ZlVqbAbGBhg9uzZiIuLg5mZGXJyclC5cuViBXvnzh1MnDgRHh4eGD9+PADg0aNHiIyMxJAhQwAAQgjo6vJOPCIioqJS6Rz7tWvX0KtXL0ydOhVPnjxB9+7d8dtvvxV5Yunp6ZgwYQK8vLykog4AlStXxpo1axAfHw8hBAIDA9G7d+8it09ERPSuU6mw+/v7Y+/evTAyMkLdunXh7++f7/y5Ko4cOYKkpCTs2bNHuq1t48aNqFmzJpYtW4Zp06ahb9++EEJg3LhxRW6fiIjoXafS8e7s7Gy0aNFC+uzg4IANGzaoPJEzZ84AAMaOHYuxY8e+dhgnJyc4OTmp3CYRERHlp9Ieu66uLlJTU6GlpQUAuHv3bpkGRURERMWj0h771KlTMWrUKCQlJWH27Nn45ZdfsGzZsrKOjYiIiIpIpcL+wQcfoHnz5vjll1+gUCgwY8YMNG/evKxjIyIioiJSqbAPGTIEISEhaNy4cVnHQ0RERCWg0jn2KlWq4J9//inrWIiIiKiEVNpjz8rKQs+ePVG3bl1UrVpV6v7999+XWWBElN8333yN+Ph76g4DAHD/fl4cn3++XM2R/KtRo8Zwdx+t7jCI1Eqlwr5w4cKyjoOIVBAffw//u3sLOob66g4FCp28x4LeeRqr5kjyyFNfqDsEogpBpcJua2uL69ev46+//oKrqyv+/PNPvl6VSE10DPVh2K2+usOocFLPP1J3CEQVgkrn2IOCgrBgwQLs2rULaWlpmD59Og4dOlTWsREREVERqVTY9+/fj4MHD8LAwAAmJiYICgrCvn37yjo2IiIiKiKVCru2tjYMDP59RVy9evWgo8P36Zbm2t8AACAASURBVBIREVU0KhV2IyMjxMTESI+UPX78OAwNDcs0MCIiIio6lS6e8/HxgZeXF+7fv4+uXbuiUqVK2Lp1a1nHRkREREVUaGEPDAzEyJEjoa+vj5CQEMTFxUEul6Np06bQ09MrrxiJiIhIRYUW9v3798Pd3R2zZs1CcHDwW/t8+NTUFMizU5B5L1zdoVQ48uwUpKaqdOCG6J1QkR4CBFS8BwHxIUAVX6Hf6E2bNoW1tTVkMhnat28vdRdCQEtLC7/99luZB0hEVJ7i4+8h9n83UauCXCBcSaEAAKTdua3mSIAkuVzdIZAKCi3sPj4+0NHRwaRJk7Bjx47yiqnUGRoaIfF5Lqo27qnuUCqczHvhMDQ0UncYRBVKLR0duFTndvFfIWkp6g6BVFBoYf/4449x9OhRNG/eHA0aNCivmIiIiKiYCi3sz58/x6JFi3DlyhWsWLEiX39fX99CG09PT8fw4cOxbds2NGzYEJGRkfDz80NOTg769esHb29vAEBMTAwWLlyIjIwMvP/++1i6dCl0dXnel4iIqKgKvY9906ZNqFu3LrS1tWFkZJTvrzDR0dEYMWIE4uLiAADZ2dnw8fHB1q1bceLECdy4cQPnzp0DAMyZMweLFy/Gjz/+CCEEH1dLRERUTIXuFrdq1QqtWrXCe++9B2dnZ+Tm5kIIodKtbocOHcKSJUswd+5cAMD169fRuHFjNGrUCADg7OyMsLAwtGjRAtnZ2bC2tgYAuLq6IiAgAO7u7iWdNyIioneOSse77e3tMXHiRFy8eBFyuRwdO3bEmjVrUKdOnQLHWblypdLnJ0+eoHbt2tJnU1NTJCQk5Oteu3ZtJCQkFHU+iIiICCoW9uXLl8Pa2hrr16+HXC7H/v378dlnn+HLL79UeUIKhUJ6JC3w7y1zBXUvKhMTgwL76elVjNtWKio9PR3Url29xG1kl1I8mqq08kwFY47LHnNcPkqSZ5UKe1xcHDZu3Ch9njVrFgYMGFCkCdWtWxeJiYnS58TERJiamubrnpSUBFNT0yK1DQBPn6ZDoRCv7SeT8d7LwshkciQmppW4DSoc81z2mOOyxxyXj8LyrK2tVejOrEovgcnNzUVOTo70OSsrq8h71VZWVoiNjcW9e/cgl8vxww8/oFu3bmjQoAEqVaqEq1evAgBCQkLQrVu3IrVNREREeVTaY+/fvz/Gjh0LV1dXaGlp4ejRo3BycirShCpVqoTVq1dj5syZyMnJgYODA/r27QsAWLt2LXx9fZGeng4LCwuMHs3HFRIRERWHSoV9xowZqFu3LiIiIqBQKODq6oohQ4YAADIzM1G1atUCxz1z5oz0v729PY4fP55vmFatWuHIkSNFjZ2IiIj+Q+WnwLi5ucHNzS1f95EjRyI4OLhUgyIiIqLiUekce2GEeP0Fa0RERFT+SlzYi3NrGhEREZWNEhd2IiIiqjj4phUqFampKXiWnos915PVHUqF9E96LoxT+cpLIip73GMnIiLSICXeYy/sVjd6dxgaGqFSVhLGWdZUdygV0p7ryahsWPgbEYmISoNKe+xJSUkIDw8HAKxZswZjxozBzZs3AQCBgYFlFx0REREViUqFff78+YiPj0dUVBQiIiLg4uKCFStWlHVsREREVEQqFfaUlBSMHTsW58+fx8CBA+Hq6oqsrKyyjo2IiIiKSKXCLpPJIJPJEBERgc6dOyMrKwuZmZllHRsREREVkUqFvWfPnrC3t4exsTHatm2LoUOHYuDAgWUdGxERERWRSlfFT58+HcOGDUOdOnUA5L2NrVWrVmUaGBERERWdSnvsjo6O+Pbbb/H48WMAYFEnIiKqoFQq7IcOHYKOjg5GjhyJKVOm4OzZs3z5CxERUQWkUmGvV68eZs2ahfDwcAwdOhTLly9Hz549sWvXLrx48aKsYyQiIiIVqfxI2Tt37sDf3x+fffYZWrduDV9fXzx8+BBeXl5lGR8REREVgUoXz40YMQLx8fFwc3PDkSNHULduXQBA9+7dYWdnV6YBEhERkepUKuzu7u7o27cv9PT0lLpra2vj559/LtIEDx8+jAMHDkifHzx4ABcXF2RlZeHq1auoUqUKAMDT0xO9e/cuUttERETvOpUKu5OTE86ePYuMjAwAgFwux/379+Ht7Y1q1aoVaYJDhw7F0KFDAQC3b9/GjBkz4OnpiTFjxuDAgQMwNTUt4iwQERHRSyoVdm9vb8THxyMxMRFt2rRBdHQ0bG1tSzzxzz77DN7e3qhSpQoePXoEHx8fJCQkoHfv3vD09IS2Nt8qS0REVBQqVc6YmBgEBQWhZ8+e8PHxwbfffovU1NQSTTgyMhLZ2dno168fkpKSYGdnh1WrVuHQoUO4cuUKjhw5UqL2iYiI3kUq7bGbmppCV1cXTZo0wf/+9z/069cPaWlpJZrwd999h3HjxgEAGjVqhC1btkj9PDw8cOzYMQwbNkzl9kxMDArsp6enU/xA3wF6ejqoXbt6idvILqV4NFVp5ZkKxhyXPea4fJQkzyoV9qpVq+L7779Hq1atcOjQITRr1qxEL4F58eIFfv31V6xevRoAcOvWLcTFxcHJyQkAIISArq5KoUmePk2HQvH6h+bIZPJix/oukMnkSEws2Q815vjNmOeyxxyXPea4fBSWZ21trUJ3ZlU6FL948WLcvHkTXbt2hY6ODjw8PDBhwoTiRYu8Qt6kSRNUrVoVQF4hX7VqFVJTUyGTyXDw4EFeEU9ERFQMhe4We3h4QEtLS/o8evRoCCFgbm6OkydPYsSIEcWaaHx8vHQvPJD37PnJkydjxIgRyM3NRZ8+ffj2OCIiomIotLCPGjUKAHD69Gmkp6fDzc0NOjo6CAkJQY0aNYo90f79+6N///5K3UaOHImRI0cWu00iIiJ6Q2F/ec579+7d+O6776Tbz7p3746PPvqo7KMjIiKiIlHpHPuzZ8+Qk5Mjfc7IyCjx7W5ERERU+lS69HzgwIEYNmwYevfuDSEEwsLCinQrGhEREZUPlQq7l5cXLCwscPHiRQDA/Pnz4eDgUKaBERERUdGpfLN4r1690KtXr7KMhYiIiEqID2MnIiLSICzsREREGoSFnYiISIOwsBMREWkQFnYiIiINwsJORESkQVjYiYiINAgLOxERkQZhYSciItIgLOxEREQahIWdiIhIg7CwExERaRAWdiIiIg2i8tvdSpOHhweSk5Ohq5s3+WXLluH+/fv48ssvkZubizFjxmDkyJHqCI2IiOitVu6FXQiBuLg4/Pzzz1JhT0hIgLe3N4KCgqCvr4/hw4ejU6dOaNGiRXmHR0RE9FYr98J+9+5dAMD48eORkpKCYcOGoVq1arCzs4ORkREAwMnJCWFhYfD09Czv8IiIiN5q5X6O/fnz57C3t8eWLVuwd+9efPfdd3j06BFq164tDWNqaoqEhITyDo2IiOitV+577DY2NrCxsZE+DxkyBH5+fpg2bZrUTQgBLS2tIrVrYmJQYD89PZ2iB/oO0dPTQe3a1UvcRnYpxaOpSivPVDDmuOwxx+WjJHku98J+5coVyGQy2NvbA8gr4g0aNEBiYqI0TGJiIkxNTYvU7tOn6VAoxGv7yWTy4gf8DpDJ5EhMTCtxG1Q45rnsMcdljzkuH4XlWVtbq9Cd2XI/FJ+WlgZ/f3/k5OQgPT0dwcHBWLNmDaKiopCcnIysrCycOnUK3bp1K+/QiIiI3nrlvsfu6OiI6OhofPjhh1AoFHB3d0eHDh3g7e2N0aNHQyaTYciQIbC0tCzv0IiIiN56armP/eOPP8bHH3+s1M3Z2RnOzs7qCIeIiEhj8MlzREREGoSFnYiISIOwsBMREWkQFnYiIiINwsJORESkQdRyVTwREb27UlNTkJGVjD/vhKk7lAopIysZqanF3+/mHjsREZEG4R47ERGVK0NDI2SmKWDRvK+6Q6mQ/rwTBkNDo2KPzz12IiIiDcLCTkREpEFY2ImIiDQIz7ETEb0iNTUFybm5CElLUXcoFU5Sbi4UqcxLRcfCTvQWSU1NQW5KDlLPP1J3KBVObkoOUnVZdIjemcIuz05B5r1wdYcBAFDkZgMAtHUrqzmSvLwAtdQdBlGFYWhoBO2kRLhUL/5VyZoqJC0F1UtwtTaVj3eisDdq1FjdISi5f/8eAOC9RhWhoNaqcPmhghkaGiEp9xkMu9VXdygVTur5RyW6RYhIU7wThd3dfbS6Q1Dy+efLAQDz5i1ScyRERKRpeFU8ERGRBmFhJyIi0iBqORS/efNmnDx5EgDg4OCAuXPnYsGCBbh69SqqVKkCAPD09ETv3r3VER4REdFbq9wLe2RkJC5cuIDg4GBoaWlh4sSJOH36NG7cuIEDBw7A1NS0vEMiIiLSGOVe2GvXro358+dDX18fANC8eXM8evQIjx49go+PDxISEtC7d294enpCW5tnCt4m/6TnYs/1ZHWHAQBIf6EAABjoV4x16J/0XDRRdxBE9E4o98LesmVL6f+4uDicPHkSgYGBuHz5MpYsWYLq1atjypQpOHLkCIYNG1be4VExVbRb5p78/y2FtepWjLiaoOLliIg0k9pud7t9+zamTJmCuXPnolmzZtiyZYvUz8PDA8eOHStSYTcxMSiLMMuEnp4OAKB27epqjqT0eHnNUHcIShYsWAAA8PPzU3MkpevlukOvp6enU+LtijkuHHNcPkqSZ7UU9qtXr2LWrFnw8fHBgAEDcOvWLcTFxcHJyQkAIISArm7RQnv6NB0KhSiLcEudTCYHACQmpqk5Es2lqTl+OV/0ejKZvMTLnDkuHHNcPgrLs7a2VqE7s+V+AvLx48eYMWMG1q5diwEDBgDIK+SrVq1CamoqZDIZDh48yCviiYiIiqHc99h3796NnJwcrF69Wuo2fPhwTJ48GSNGjEBubi769OmDgQMHlndoREREb71yL+y+vr7w9fV9bb+RI0eWczRERESa5Z14VjwREVUsGVnJ+PNOmLrDAAC8kGUBAPT1qqg5kjwZWckAahZ7fBZ2IiIqVxXt1s+Xb9ys17D4xbR01SxRjljYid4y8tQXSD3/SN1hQJGdd2WzduWKceuSPPUFYKLuKEgVfONm2WJhJ3qLVKQ9nZd7Oe+ZVJCYTCpWfojUhYWd6C1SkfZ0NG0v51VJcjlC0lLUHQYAIFOR93jkqhXgEdtJcjk057FamouFnYjoFRVtr//Z/x8ZqfOe+uOqjoqXH8qPhZ2I6BUV6agIoNlHRqhsqP/YDhEREZUaFnYiIiINwsJORESkQVjYiYiINAgLOxERkQZhYSciItIgLOxEREQahIWdiIhIg7CwExERaRAWdiIiIg3Cwk5ERKRBWNiJiIg0SIUq7N9//z369++PPn36IDAwUN3hEBERvXW0hBBC3UEAQEJCAkaMGIGgoCDo6+tj+PDhWL9+PVq0aKHS+E+fpkOhKNtZ+eWX87hw4VyJ27n//69hfK8UXsPYtasDunTpVuJ2KgrmuOwxx+WjouWZOS7Y27Yua2trwcTEoMD+Fea1rZGRkbCzs4ORkREAwMnJCWFhYfD09FRpfG1trbIMDwBQtWoVGBsbl7gdXV0dAED16jVK3FbVqlXKZd7LC3Nc9pjj8lHR8swcF+xtW5ff1H6F2WPfvn07MjMz4e3tDQA4fPgwrl+/juXLl6s5MiIiordHhTnHrlAooKX1768QIYTSZyIiInqzClPY69ati8TEROlzYmIiTE1N1RgRERHR26fCFPbOnTsjKioKycnJyMrKwqlTp9Ctm2Zd6EFERFTWKszFc3Xq1IG3tzdGjx4NmUyGIUOGwNLSUt1hERERvVUqzMVzREREVHIV5lA8ERERlRwLOxERkQZhYSciItIgLOxEREQaROMKu7m5+RuH8fDwKPM4evTogQcPHih1u3TpEmxsbODi4gIXFxc4OzujR48e+Pbbb9/Y3oIFC9CzZ0/88MMPpRpnUFAQ5s+fX6ptFiQ9PR1Lly7FwIED4eLiAg8PD/z5559lPt1NmzZh06ZNAPLy+PDhw2K18/PPP2PPnj2lGVqZU2X5zp8/H0FBQYUO8+q6++GHH6Jv376YNWsW0tPTixSPKtve67ad0qSu9bA0ffnll1i5cqX0+eeff4a5uTmuXr0qdZs9e3ahy/XV7UIVkyZNQkJCAuLj4+Hj41O8wN8gLCwMrq6uGDRoEJydnbFr165itfPHH39g4cKFhQ5T0Hpvbm6OCRMmKHVLTk6GhYVFkfL14MED9OjRAwCwceNGhIeHqzxuSVWY293K0+XLl9U27bZt22L//v3S55iYGAwZMgTOzs4wMCj4of7BwcG4fv069PX1yyPMUqdQKDBp0iR06tQJx44dg66uLi5evIhJkyYhNDS0VJ73rIpLly5hxowZxRr3xo0bpRzN2+W/6+6sWbOwfft2fPLJJyq3oc5tD6g462FJ2dnZYcWKFdLnCxcuoGvXrrhw4QI6dOgAALh69SrmzZtXatPcuXMngLxtKD4+vtTafSkhIQGff/45goKCYGxsjIyMDHh4eKBp06bo2bNnkdpq164d2rVrV+xYYmNjkZKSIr275NSpU6hRo/jPkffy8ir2uMWhsYX90qVL2L59OypXrow7d+7A3Nwca9euhb+/PwBg6NChOHz4MM6fP4+AgADk5uaiYcOGWL58OYyNjdGjRw9YWloiJiYGa9asweLFi9GyZUvExMTAxMQEGzduhJGREQ4cOICQkBBkZWVBT08P69atQ7NmzVSO8+HDh6hSpQr09fUhl8vh7++Py5cvQy6Xw9XVFWPHjsXUqVMhhMDQoUPx1VdfISIiAvv27YNCoYCFhQWWLFmCSpUqwc7ODm3btkViYiLmzp2LDRs2QKFQoGXLlpg9ezZ8fHyQlpaGJ0+eYPDgwflWts8//xy//PILtLW10atXL5VfwKPq8nj8+DFmzZoFbe28A0V2dnbw8/ODQqHAtm3bcPz4cejo6KBLly6YM2cOHj9+DE9Pz3x5r1atGnx8fHD79m0AgLu7O4YNG4b58+fD1tYWrq6uAPJ+ed+6dUuKYceOHXjy5AkmT56MwMBAXLx4EXv27EF2djZevHiBVatWoX379vDw8EC7du1w9epVJCcnw9fXFw0aNMB3330HAKhfvz7q16+PNWvWAAAMDQ2xbt061KxZs9TyVRZiY2OxePFipKSkoGrVqli4cKH0rIizZ8/iwIEDkMlkmDZtGvr37//G9mxtbXHhwgUAeXuMX3zxBRQKBRo1aoRly5ahVq1aStuRvb09gH+3vTdtOzdv3sTixYuRm5uLSpUqwc/PD02aNClRDt60HgIocF2cMWMGmjVrhr///htt2rSBjY0NgoODkZqaii1btqB58+bo0aMH+vbti8jISADAqlWr0KZNG1y+fBkbNmxAdnY2nj9/jgULFqBXr16YP38+DAwM8OeffyIhIQEzZszA4MGD0atXL+zevRtNmzZFZmYm+vXrh1OnTqFSpUoA8grXgwcPkJmZiapVqyIqKgqrV6/G8uXL4eXlhfj4eBgYGKBOnTpISkrC4sWL8c8//0BLSwuffPIJOnfuDAC4fv06hg4diszMTAwbNgxjxozBP//8g08//RSZmZnQ1taGr68vrK2t0aNHD3z99ddYsWIFHjx4gKVLl2LJkiXYsWMHTp48Cblcjq5du2LOnDnFehz4s2fPIJPJkJ2dDQCoVq0aVq9eLc3ztWvXsHLlSuTk5MDY2BjLli1D48aNERMTg8WLFyM7OxuGhoZYu3Yt7t27h82bN2P//v0F5r4wPXv2RHh4ONzc3ADkHUno3bu31P/69evw8/NDdnY2jI2NsXTpUjRq1Ah//fWXdKSgVatW0vCvfjdt2LABUVFRSE1NhampKTZs2IBatWoVOV+FEhrGzMxMCCHExYsXhbW1tXj8+LGQy+XCzc1NhIeHKw3z9OlTMWjQIJGSkiKEEOLbb78VPj4+QgghHB0dxdGjR4UQQsTHxwtzc3Px559/CiGE8PT0FF9//bVIS0sTY8aMEVlZWUIIIb744guxbNkyafz4+Hil2F7GNGjQING7d29ha2srZs6cKaKjo4UQQnzzzTdi1apVQgghcnJyxKhRo8Svv/6qFPP//vc/MWLECJGdnS2EEGLt2rViy5Yt0jAXL16UptWhQwfx/PlzIYQQu3btEkFBQUIIIZ4/fy5sbGzE06dPxdGjR8W8efPEgwcPRP/+/YUQQmRmZgovLy9pGqVh165dYsqUKa/td/bsWTF06FCRmZkpZDKZmDp1qjhw4ECBeb906ZKYNGmSEEKIf/75R8yZM0cIIcS8efOkZfZqzgICAkRAQIAQ4t/lIpfLxejRo8XTp0+FEEIcPnxYim/UqFFixYoVQgghwsPDxeDBg/O1M2rUKGm57dixQ0RERJRSpkrXy+UrhBBubm7ixx9/FEII8fvvv4vu3buLnJwcMW/ePDFx4kQhk8nEP//8I7p06SKePHmi1M7FixfFqFGjpM8ZGRli3Lhx4ssvvxRJSUmia9eu0vq+c+dOMXPmTCGE8nYkxL/LRJVtZ/78+eLEiRNCCCGCgoJEcHBwifNR2HoohGrrolwuF7169RJr164VQgixadMmsXLlSin2TZs2CSHy1p2BAwcKIYSYOXOm+Pvvv4UQQkRGRkrd582bJ2bMmCEUCoW4efOmsLW1FUIIsXHjRvHFF18IIYQIDg4Wixcvzhfr5MmTRVRUlLh//74YMWKEEEKIHj16iOTkZBEUFCStwx9//LH46aefhBBCJCQkiJ49e4q0tDQREBAgXFxcREZGhkhLSxO9e/cWf/31l9i0aZPYuXOnEEKIc+fOiV27dknzFh8fr7QunDt3TsycOVPk5uYKuVwuZs+eLY4dO1b0BfP/Fi9eLNq0aSPc3NyEv7+/iImJEULkfR86OjpK29yJEyeEq6urEEKI/v37izNnzgghhAgMDBSrV69WirGw3L+6br5kZmYmrl69Kn3HJCYmijFjxkjbf05OjnB2dhYPHz4UQghx/vx5MWbMGCGEEAMHDhQXLlwQQgixefNm4ejoqDStuLg44enpKeRyuRBCiDlz5ojdu3cXO18F0dg9dgBo2bIl6tatCwBo3rw5UlNTlfpHR0fj8ePHGD16NIC8w3SGhoZSfysrK+l/ExMTtGnTRmo3NTUVBgYGWLduHUJDQxEXF4eIiAi0bt260JheHs588eIF5syZAwMDA2mvKSoqCjExMbh48SIAIDMzE7du3cL7778vjX/p0iXcu3cPw4YNAwDIZDIprv/G3LRpU1SvXh0AMGHCBFy8eBG7d+/G7du3IZPJkJWVJQ1bp04dVKpUCcOHD4ejoyM+/fRT6ZdyadDW1i6wvYsXL2LAgAGoUqUKAMDNzQ3Hjh2Dg4PDa/PesmVLxMbGYsKECejWrRvmzp1brHi2bNmCM2fOIDY2FpcvX5b24ADggw8+kKaZkpKSb/yePXvC09MTvXr1Qs+ePdGlS5cix1CeMjIycP/+ffTp0wcAYG1tDUNDQ9y9excAMHjwYOjq6qJOnTqwtrZGdHR0vr2aGzduwMXFBQCQm5sLOzs7jBs3DpGRkbC0tETDhg0BAB999BF27NghjffqOvmSKtuOg4MDli1bhoiICPTo0QOOjo4lzkNh6yFQ+LpYq1YtaV2sW7eudASifv36StcEvNw2e/Togfnz5yM5ORlr1qzBzz//jLCwMERHRyMjI0MavkuXLtDS0oKZmZm0rrm6umLcuHHw8vJCcHAwZs+enS9We3t7/Pbbb4iNjZXWPzs7O1y9ehVXrlyRlnVkZCTu3r2LgIAAAHnL7uWh9P79+6Nq1aoAAEdHR1y+fBn29vaYOXMmYmJi4ODggFGjRhWYr6ioKFy/fl06SpadnY369esXOPybLF26FNOnT8eFCxdw4cIFDBs2DGvXrkWTJk1Qo0YN6buyX79+WLx4MR4+fIjExERp3XB3dweQ9z35UmG5L4iNjQ1iY2ORlpaGsLAwODk5ISkpCQAQFxeH+Ph4TJs2TRo+PT0dycnJePLkibQsXF1dcfToUaV2GzdujHnz5uHw4cOIjY3FtWvX8N577xU7XwXR6ML+6gaspaUF8Z+H7MnlcrRv3x7btm0DAOTk5Cgt9FfHf11bjx8/hoeHB0aNGoVu3bqhVq1aiImJUSk2fX19rFixAk5OTjhx4gT69+8PuVyOOXPmSBtkcnIyqlWrli/mfv36wdfXF0DeF7ZcLpf6V65c+bX/r169GvHx8Rg4cCB69eqFyMhIpXzo6uri8OHDuHz5Ms6fP4/hw4dj//79aNq0qUrz8yZt27bFN998k++tfevXr0dUVBQGDx6sNHxubi6A1+fd2NgYoaGh+OWXX3Du3DkMHjwYoaGhSstYJpMVGk9GRgaGDBmCQYMGoWPHjjA3N0dgYKDU/+V0CzqkOHbsWDg6OuLnn3/GmjVrcP36daUNXZ2uXLmCRo0aoU6dOhBCQEdHJ9+6D+S9QfHluqOjoyN1VygU0NPTyzf8f8+xvzr8f9t9ufwAvLaQqrLt9O3bFzY2Nvj555+xd+9enD17Vum8cnEUth527tw537wA/66L/72+5dWcvUpX99+vVYVCAR0dHbi7u6NTp07o1KkT7O3t8emnn0rDvG5da9iwIerXr49Tp07h6dOnr/1xZGdnh/Xr10NfXx+TJk0CkPcjITo6GtevX5cOCSsUCuzbt086X/zkyROYmJjgp59+yherrq4uOnTogNDQUJw9exYnTpxAcHBwgReNyuVyjBkzBuPGjQMAPH/+vMC8vMnZs2eRmZmJ/v37w83NDW5ubjh06BCOHDny2h82L9fpV/OWk5ODJ0+eKA1XWO4LoqWlBUdHR4SHh+PHH3/Exo0bpe8HhUKBhg0bIiQkRMpBUlJSvhrzujzcuHEDn3zyCcaOHQsnJydoa2u/dtssKY27Kl4VOjo6yM3NhZWVLOTwNgAACzlJREFUFa5du4bY2FgAwNatW6Vz8Kr4448/0LhxY4wdOxbt2rXDTz/9pFRk36R69eqYOXMm/P39kZ2dDTs7Oxw6dAgymQwZGRlwd3fHtWvXlMbp1KkTTp8+jadPn0IIgc8++wz79u1747R++eUXTJgwAf369UNsbCwSEhKUvsT++usvjBo1Ch07dsS8efPQvHlzKS+l4f3334eJiQk2b94s5SgiIgJBQUEYM2YMQkNDkZ2djdzcXBw9ehR2dnYFthUeHo45c+age/fu8PX1RdWqVfH48WMYGRnh77//BgD89NNPrx1XR0cHcrkccXFx0NLSwtSpU6WcvmnZvVxvgLzzxBkZGRg7dizGjh2Lv/76qzhpKRNHjx6V5v/WrVto1KgRDAwM0LBhQ5w6dQpA3vnKpKQktGzZEgAQGhoKIQQePnyIGzduFOnCIysrK0RHR0t7rQcPHkSnTp1eO+zLHKqy7Xz88cf4448/MHz4cHh5eZVKjgtbD1u0aAE7O7sirYuvExoaCgA4ffo0mjdvDiEE4uLi4OXlhW7duiE8PFyl7wk3NzesWLECgwYNem1/c3NzPH78GLdv35aWl729Pc6dOwdjY2NpT9zOzg7ffPMNAODvv/+Gs7OzdLTuxx9/xIsXL5CamoqzZ8/Czs4O/v7+OH78OAYPHozFixfny/ur24GdnR1CQkKQkZGB3NxczJgxAz/++GOR8vVS5cqVsW7dOmk9EkIgJiYGrVu3RrNmzZCSkoLr168DAE6cOIH69eujQYMGqFOnjnStR0hICDZu3Ci1mZKSUqzcA3lHBb755hvo6+srXT/TrFkzpKam4v/au9OQKLs+juNfdaZSpJwwqyGxUCktwlakxqaFylxaNKuJpIUahSzCNBpaSC1brGyQbsqKItu1aV/I9hftRBtkFIEtmAgWY1qpjc+LmOtRm9J6qsd7+n/eqTPXObMe/+c61/nduXMH+PJ5S0lJQaPRoNVquXz5MoDDK5hu377NwIEDMRgMdO3alcuXL//QmNFcTl2xf8uIESMYN24cFouFzMxMFixYgM1mo2PHjsqCqOYYPHgw+/fvJyIigrq6OgYMGKAs6GquuLg48vLy2LlzJ7Nnz6a4uJgJEyZQW1tLTEzMV1+QPXr0ICkpienTp2Oz2QgKCsJoNDbZTkJCAosWLaJNmzZ06tSJXr16NZg+DA4OJiQkhKioKNzd3enbt+8vTddzcXHhn3/+YfXq1URFRaFSqdBoNOTm5hIcHExJSQmxsbHU1tai0+mYNm0ab968cXisIUOGcO7cOSIjI2ndujVjx46le/fuGAwGFixYQHR0NKGhoXTo0OGr+w4dOhSj0ci2bdsICgpizJgxuLi4oNPpGlwq5Ij9nx5vb2+Sk5NZvHgxKpUKDw+P/7mS/JWMRiOLFi1iz549dOrUiU2bNgFfpiRXrFhBTk4OarWanJwcpQr18PAgJiaG2tpa0tPTf2ghoLe3N+np6SQlJVFTU4NWq21wKVZ99s/eoUOHmvzsJCYmsmTJEjZv3oxarWbFihU/94TU8733obe3N8OGDePx48fNfi86cvfuXQoKCnB3d2fNmjV4eXkxceJEIiMjUalUhIaG8vHjR6qqqr57nFGjRrFs2TLl9Iejx+Lv74/NZlNOI2k0GtRqtbI4DmDp0qUsX76c6OhoANatW6dcgaPVapkyZQqfPn0iISEBf39/4uPjWbhwIRaLBTc3N9auXdugXX9/fyoqKkhNTSUrK4uioiImTZrE58+fCQsL+2r2rblCQ0NJSkoiMTFRmXELCwtj7ty5tGrViuzsbDIyMvjw4QPt2rUjOzsb+O/7OisrC41Gw7p165Si5Gefe/hyuqqsrIy4uLgGv2/VqhVms1lZyOfp6ak8R1lZWZhMJjZt2kRISMhXx4yIiCApKUl5LRp/D/8qEgIjhBC/iH3luH29wc+qq6vj6tWr7N+/XzlVKERz/ZUVuxBCtGSZmZlcunRJuXZciB8hFbsQQgjhRP7KxXNCCCGEs5KBXQghhHAiMrALIYQQTkQGdiH+UnPmzFGu+/8TLBYLCQkJf6w9R169ekWfPn3+r30Q4neTVfFC/KVkxbUQzkkGdiFagMrKSkwmE8XFxbi6utKzZ0/S09PJz88nLy8PV1dXvL29WbZsGd26dWPx4sUEBgYqudH1f7Ynqj158oTk5GQCAgJYvnw55eXluLq6Kultw4cPx2w2U1VVRXZ2Nr6+vjx9+pTa2lrS0tLo168f5eXlmEwmXrx4gZeXFx06dCAwMJB58+Z99/Fs3bqVI0eOoFKp8PPzY82aNQCUlZVhNBopKSnBzc2NDRs24O/vz71798jKyqK6upqysjIGDRpEZmYmr169YsaMGej1eu7fv4/VaiU1NZWRI0eSk5Oj7BX++vVrZYMpHx8fSktLSU9Pp6SkhJqaGiIjI0lMTPztr6MQLYFMxQvRAhQWFlJZWcmxY8coKCgAID8/n+3bt7N7926OHz9OVFQUc+fObdbe0oGBgZw5c4aRI0eSnJxMeHg4p06dIjc3l40bN/L+/fsGt3/w4AGzZs3i6NGjSrQkwMqVKwkICODMmTOYzWbu3r3bZNsXLlzAYrFw8OBBTp48SZcuXdizZw8AL1++ZMmSJZw4cYL+/fuzY8cOAHbv3s38+fPJz8/n1KlTXLx4kUePHin30el0FBQUsHDhQjIzM5W27ty5g9ls5uzZs7i7uyvRuqmpqcTGxmKxWCgoKODatWucPn26yb4L4QxkYBeiBejXrx/Pnj0jPj6e3Nxcpk+fTnFxMREREcr2rjExMZSWljZrC0p7IuC7d+8oKipStsXs3Lkz58+fV7YUtdNqtUq6WnBwsJKEeOXKFSZPngyAj48P4eHhTbZ9/fp1wsPDlaREk8mkBOT07t0bPz8/AIKCgigvLwe+hBRVVFSwZcsW0tLS+PTpk7Ltp1qtRq/XK32rn7Y3cOBA5bHY+11VVcXt27cxm82MGzeOSZMmUVJSQlFRUZN9F8IZyFS8EC2Ar68vhYWF3Lx5kxs3bjBz5kx8fHyU+Fg7e3Ja4ySpxml29gAQe3pX/QSs58+ffxWtWT8JsP6xVSpVg3bqR9t+i5ubW4P2rFYrVqu1QX8atzNt2jS6d+9OWFgYY8aM4f79+8rf1Gq10m7jtD1H/bbZbNTV1XHgwAElfrW8vJzWrVvz9u3bJvsvxL+dVOxCtAD79u3DZDKh0+lITU1Fp9MxfPhwTp8+rVS1hw8fxsvLCz8/PzQajTJVXVpayq1btxwe19PTk549e3L06FHgS1yqwWCgoqKiWf3S6/XKqYG3b99y/vz5b0bZ2g0aNIjCwkJluj8nJ4ddu3Z98/ZWq5WHDx+SkpLCqFGjePPmDS9evHAYodocnp6ehISEKFGjVqsVg8HAhQsXfup4QvzbSMUuRAswfvx4bt26RUREBO7u7nTu3Jn4+Hg0Go2S5Ne+fXu2bt2Kq6sr8fHxpKSkMHr0aLp06fLdaNENGzaQlpZGXl4eLi4urFq1ymHynSMmk4mlS5cSHR2Nl5cXWq22QZXsiF6v59mzZxgMBgACAgLIyMhQImMba9u2LUajkQkTJuDh4UHHjh3p27cvxcXF+Pr6Nqufja1fv56MjAyio6Oprq4mKiqKsWPH/pYkLSFaGtkrXgjxTXv37iU4OJg+ffpQXV3N1KlTmTdvnnLOWwjR8kjFLoT4Jnu1bbPZqKmpITw8HL1ez9SpU6msrHR4n7179361OE8I8edIxS6EEEI4EVk8J4QQQjgRGdiFEEIIJyIDuxBCCOFEZGAXQgghnIgM7EIIIYQTkYFdCCGEcCL/AeiE7ymNE4brAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["plt.figure(figsize = (8,4))\n","\n","g = sns.boxplot(x=\"education_level\",y=\"jhi\", data=data_final)\n","\n","plt.title('education_level and jhi',fontsize = 16)\n","plt.ylim ([0,10])\n","\n","plt.ylabel(\"jhi\",fontsize=12)\n","plt.xlabel(\"education_level\",fontsize=12)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"ZsbejivP_p14"},"source":["### Exploratory Data Analysis w.r.t Target Variable \"offer_dropped\"\n","\n","Here we are trying to understand why employees are dropping the offer. So the target variable is offer_dropped.\n","It is good thing to understand the relationship between different variables versus the target variable."]},{"cell_type":"markdown","metadata":{"id":"7ofeqi3M_p14"},"source":["#### Category vs Category Variable Analysis\n","#### sourcing_channel vs offer_dropped"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pwx1eHjy_p15","outputId":"e6701807-f8d1-4fc6-c06c-ba947b77b2e8"},"outputs":[{"data":{"text/html":["