--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-large-ReqORNot results: [] --- # deberta-large-ReqORNot This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5297 - Accuracy: 0.9135 - Weighted precision: 0.9135 - Weighted recall: 0.9135 - Weighted f1: 0.9134 - Macro precision: 0.9135 - Macro recall: 0.9128 - Macro f1: 0.9131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted precision | Weighted recall | Weighted f1 | Macro precision | Macro recall | Macro f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:| | 0.4826 | 1.0 | 1896 | 0.4286 | 0.9020 | 0.9020 | 0.9020 | 0.9019 | 0.9018 | 0.9014 | 0.9016 | | 0.3429 | 2.0 | 3792 | 0.4274 | 0.9077 | 0.9091 | 0.9077 | 0.9078 | 0.9076 | 0.9089 | 0.9076 | | 0.1299 | 3.0 | 5688 | 0.5297 | 0.9135 | 0.9135 | 0.9135 | 0.9134 | 0.9135 | 0.9128 | 0.9131 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2